Nonlinear scalar field equation with competing nonlocal terms

被引:5
作者
D'Avenia, Pietro [1 ]
Mederski, Jaroslaw [2 ,3 ]
Pomponio, Alessio [1 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Karlsruhe Inst Technol KIT, Dept Math, Inst Anal, D-76128 Karlsruhe, Germany
关键词
elliptic equation; nonlocal problem; Riesz potential; Choquard equation; Hartree equation; mountain pass; NONRADIAL SOLUTIONS; EXISTENCE; SOLITONS; INEQUALITIES;
D O I
10.1088/1361-6544/ac0d47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find radial and nonradial solutions to the following nonlocal problem -Delta u + omega u = (I-alpha* F(u)f(u) - (I-beta*G(u)g(u) in R-N under general assumptions, in the spirit of Berestycki and Lions, imposed on f and g, where N >= 3, 0 <= beta <= alpha <= N, omega >= 0, f,g:R -> R F, G, and I (alpha) , I (beta) are the Riesz potentials. If beta > 0, then we deal with two competing nonlocal terms modelling attractive and repulsive interaction potentials.
引用
收藏
页码:5687 / 5707
页数:21
相关论文
共 28 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1997, Minimax theorems
[3]   Sum of weighted Lebesgue spaces and nonlinear elliptic equations [J].
Badiale, Marino ;
Pisani, Lorenzo ;
Rolando, Sergio .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (04) :369-405
[4]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[5]   Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems [J].
Bellazzini, Jacopo ;
Frank, Rupert L. ;
Visciglia, Nicola .
MATHEMATISCHE ANNALEN, 2014, 360 (3-4) :653-673
[6]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[9]   Interactions of nonlocal dark solitons under competing cubic-quintic nonlinearities [J].
Chen, Wei ;
Shen, Ming ;
Kong, Qian ;
Shi, Jielong ;
Wang, Qi ;
Krolikowski, Wieslaw .
OPTICS LETTERS, 2014, 39 (07) :1764-1767
[10]   Atomic Bose-Einstein condensation with three-body interactions and collective excitations [J].
Gammal, A ;
Frederico, T ;
Tomio, L ;
Chomaz, P .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :4053-4067