Note on the number of integral ideals in Galois extensions

被引:10
|
作者
Lue GuangShi [1 ]
Wang YongHui [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Capital Normal Univ, Dept Math, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Dedekind zeta-function; integral ideal; congruences; FIELDS;
D O I
10.1007/s11425-010-4091-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be an algebraic number field of finite degree over the rational filed Q. Let a(k) be the number of integral ideals in K with norm k. In this paper we study the l-th integral power sum of a(k), i.e., Sigma(k <= x) a(k)(l) (l = 2, 3,...). We are able to improve the classical result of Chandrasekharan and Good. As an application we consider the number of solutions of polynomial congruences.
引用
收藏
页码:2417 / 2424
页数:8
相关论文
共 50 条