Carboxyl functional group-assisted defects passivation strategy for efficient air-processed perovskite solar cells with excellent ambient stability

被引:29
|
作者
Deng, Yaxin [1 ]
Li, Xin [1 ]
Wang, Rui [1 ]
机构
[1] Harbin Inst Technol, MIIT Key Lab Crit Mat Technol New Energy Convers, Sch Chem & Chem Engn, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Terephthalic acid; Ambient condition; Perovskite solar cells; PHOTOVOLTAIC PERFORMANCE; FILL FACTOR; HYSTERESIS; TRIHALIDE;
D O I
10.1016/j.solmat.2021.111242
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Because the perovskites materials tend to decompose in humid air and at high temperature, a controlled inert condition is usually necessary to obtain high-performance perovskite solar cells (PSCs), which is inconvenient for large-scale commercial production. Furthermore, defects/traps in the perovskite layer, as non-radiative charge recombination centers, dramatically deteriorate the device efficiency and stability. Inspired by the Lewis acidbase adduct theory, herein we report a terephthalic acid (PTA)-assisted defect passivation strategy for fabricating highly efficient and stable devices in ambient air. Density functional theory calculation confirms that electrons are located at two carboxylic acid end groups in the PTA molecule, which can serve as Lewis base to form the Lewis acid-base adduct with uncoordinated Pb2+ defects. The PTA-treatment effects promote high performance of PSCs, the champion device provides power conversion efficiency (PCE) of 18.22%, in sharp contrast to 17.41% of control sample. More importantly, unencapsulated devices retain over 80% of their original PCE after being stored for 4500 h in air (approximate to 45% average relative humidity (RH)), exhibiting one of the best long-term stability to date. Correspondingly, PTA-treatment gives the device favorable thermal stability. Our strategy provides a simple yet effective path for passivating defects and improving performance of PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Tailoring Crystal Growth Regulation and Dual Passivation for Air-Processed Efficient Perovskite Solar Cells
    Li, Qianyi
    Li, Dongyang
    Li, Zhiqi
    Liang, Qiong
    Fong, Patrick W. K.
    Han, Yu
    Liu, Kuan
    Yu, Jiangsheng
    Bai, Peng
    Zhu, Tao
    Bai, Yang
    Yang, Guang
    Ren, Zhiwei
    Li, Gang
    ADVANCED SCIENCE, 2025,
  • [2] Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment
    Krishna, B. Gopal
    Ghosh, Dhriti Sundar
    Tiwari, Sanjay
    SOLAR ENERGY, 2021, 224 : 1369 - 1395
  • [3] Defects Passivation Strategy for Efficient and Stable Perovskite Solar Cells
    Cao, Yunxuan
    Gao, Fangliang
    Xiang, Ling
    Li, Hanfang
    Li, Dongyang
    Liu, Qing
    Liu, Hongliang
    Zou, Can
    Li, Shuti
    ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
  • [4] Air-Processed Perovskite Solar Cells with >25% Efficiency and High Stability Enabled by Crystallization Modulation and Holistic Passivation
    Shi, Xiaoyu
    Liu, Tianxiao
    Dou, Yunjie
    Hu, Xiaodong
    Liu, Yangyang
    Wang, Feifei
    Wang, Lingyuan
    Ren, Zhijun
    Chen, Shangshang
    ADVANCED MATERIALS, 2024, 36 (31)
  • [5] Air-Processed Efficient Perovskite Solar Cells With Full Lifecycle Management
    Tian, Chuanming
    Wu, Tianhao
    Zhou, Xinliang
    Zhao, Yu
    Li, Bin
    Han, Xuefei
    Li, Kerui
    Hou, Chengyi
    Li, Yaogang
    Wang, Hongzhi
    Zhang, Qinghong
    ADVANCED MATERIALS, 2025, 37 (01)
  • [6] Multi-functional cyclic ammonium chloride additive for efficient and stable air-processed perovskite solar cells
    Cho, Se-Phin
    Shin, Jong Chan
    Lee, Hyun-Jung
    Lee, Minjae
    Na, Seok-in
    Kim, Seok-Soon
    JOURNAL OF POWER SOURCES, 2022, 531 : 1 - 9
  • [7] Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells
    Mohammed, Mustafa K. A.
    Sarusi, Gabby
    Sakthivel, P.
    Ravi, G.
    Younis, Umer
    MATERIALS RESEARCH BULLETIN, 2021, 137
  • [8] A NH4F interface passivation strategy to produce air-processed high-performance planar perovskite solar cells
    Ren, Ziqiu
    Wang, Na
    Zhu, Menghua
    Li, Xin
    Qi, Jingyao
    ELECTROCHIMICA ACTA, 2018, 282 : 653 - 661
  • [9] Dual-Passivation Strategy for Improved Ambient Stability of Perovskite Solar Cells
    Gupta, Ritesh Kant
    Garai, Rabindranath
    Iyer, Parameswar Krishnan
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 10025 - 10032
  • [10] Bifunctional Dimethyldichlorosilane Assisted Air-Processed Perovskite Solar Cell with Enhanced Stability and Low Voltage Loss
    Zhou, Peng
    Lu, Shaojuan
    Mo, Yanping
    Cheng, Jiahao
    Jiao, Chuanjia
    Zhang, Xiao-Li
    Li, Wangnan
    Liang, Guijie
    Wang, Jingyang
    Huang, Fuzhi
    Cheng, Yi-Bing
    SOLAR RRL, 2023, 7 (05)