Anionic and cationic ring-opening polymerization of 2,2,4,4,6,6-hexamethyl-8,8-divinylcyclotetrasiloxane

被引:20
作者
Teng, CJ
Weber, WP [1 ]
Cai, GP
机构
[1] Univ So Calif, Dept Chem, KB & DP Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA
[2] Zhejiang Univ, Dept Polymer Sci & Engn, Hangzhou 310028, Peoples R China
关键词
D O I
10.1021/ma030162q
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Ring-opening polymerization (ROP) of 2,2,4,4,6,6-hexamethyl-8,8-divinylcyclotetrasiloxane (I) initiated by both 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2lambda(5),4lambda(5)-catenadi(phosphazene) (C22H63N13P4, P-4-t-Bu superbase) and trifluoromethanesulfonic acid (CF3SO3H, triflic acid) has been studied. Both reactions lead to mixtures of linear copolymer, low molecular weight co-oligomers and monomeric cyclosiloxanes. The composition, molecular weight distribution, microstructure, and thermal properties of the copolymers have been determined. The copolymer microstructure has been determined by Si-29 NMR spectroscopy. Monomeric cyclosiloxanes have been identified by GC/MS. Both copolymer microstructure and cyclosiloxanes formed depend on the particular catalyst system utilized. P-4-t-Bu superbase-initiated anionic ROP of I leads to a copolymer with a random microstructure and to a series of monomeric cyclotetra-, cyclopenta-, and cyclohexasiloxanes formed by random combination of dimethylsiloxane (D) and divinylsiloxane (V) units. On the other hand, triflic acid-initiated ROP of I occurs in a chemoselective manner. This leads to a copolymer with a more ordered microstructure. In this case, I is the only monomeric cyclosiloxane found.
引用
收藏
页码:5126 / 5130
页数:5
相关论文
共 24 条
[1]   The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclohexane - The vibrational frequencies of alicyclic ring systems [J].
Aston, JG ;
Szasz, GJ ;
Fink, HL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1943, 65 :1135-1143
[2]   STRAIN-INDUCED CRYSTALLIZATION IN POLY[METHYL(3,3,3-TRIFLUOROPROPYL)SILOXAN] NETWORKS [J].
BATTJES, KP ;
KUO, CM ;
MILLER, RL ;
SAAM, JC .
MACROMOLECULES, 1995, 28 (03) :790-792
[3]  
BIEMANN K, 1965, ISOTOPE PEAKS MASS S, P59
[4]  
BOILEAU S, 1985, ACS S SERIES, V286
[5]   Cationic polymerization of a model cyclotrisiloxane with mixed siloxane units initiated by a protic acid. Mechanism of polymer chain formation [J].
Chojnowski, J ;
Cypryk, M ;
Kazmierski, K .
MACROMOLECULES, 2002, 35 (27) :9904-9912
[6]   STUDIES OF CYCLIC AND LINEAR POLY(DIMETHYLSILOXANES) .19. GLASS-TRANSITION TEMPERATURES AND CRYSTALLIZATION BEHAVIOR [J].
CLARSON, SJ ;
DODGSON, K ;
SEMLYEN, JA .
POLYMER, 1985, 26 (06) :930-934
[7]   Microstructure of the copolymer chain generated by anionic ring-opening polymerization of a model cyclotrisiloxane with mixed siloxane units [J].
Cypryk, M ;
Kazmierski, K ;
Fortuniak, W ;
Chojnowski, J .
MACROMOLECULES, 2000, 33 (05) :1536-1545
[8]  
ESSWEIN B, 1996, MACR S INT S ION POL, P170
[9]   Side-chain liquid-crystalline polysiloxanes via anionic polymerization: (n-undecyloxy)arenecarboxylic acid mesogens linked to poly(dimethylsiloxane-co-methylvinylsiloxane) [J].
Hempenius, MA ;
Lammertink, RGH ;
Vancso, GJ .
MACROMOLECULES, 1997, 30 (02) :266-272
[10]   Ring-opening polymerization of siloxanes using phosphazene base catalysts [J].
Hupfield, PC ;
Taylor, RG .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS, 1999, 9 (01) :17-34