Incompatibility of Time-Dependent Bogoliubov-de-Gennes and Ginzburg-Landau Equations

被引:7
|
作者
Frank, Rupert L. [1 ]
Hainzl, Christian [2 ]
Schlein, Benjamin [3 ]
Seiringer, Robert [4 ]
机构
[1] CALTECH, Math 253 37, Pasadena, CA 91125 USA
[2] Univ Tubingen, Inst Math, Morgenstelle 10, D-72076 Tubingen, Germany
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[4] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
superconductivity; quasi-free states; critical temperature; BCS theory; LOW-DENSITY LIMIT; CRITICAL-TEMPERATURE; FERMION PAIRS; BCS THEORY; SUPERCONDUCTIVITY; WEAK; CONDENSATION; DYNAMICS;
D O I
10.1007/s11005-016-0847-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time-dependent Bogoliubov-de-Gennes equations for generic translation-invariant fermionic many-body systems. For initial states that are close to thermal equilibrium states at temperatures near the critical temperature, we show that the magnitude of the order parameter stays approximately constant in time and, in particular, does not follow a time-dependent Ginzburg-Landau equation, which is often employed as a phenomenological description and predicts a decay of the order parameter in time. The full non-linear structure of the equations is necessary to understand this behavior.
引用
收藏
页码:913 / 923
页数:11
相关论文
共 50 条
  • [31] A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations
    Li, Buyang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 238 - 250
  • [32] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
    Li, Minsi
    Gu, Jiahong
    Du, Long
    Zhong, Hongwei
    Zhou, Lijuan
    Chen, Qinghua
    CHINESE PHYSICS B, 2020, 29 (03)
  • [33] Time-periodic solutions of the time-dependent Ginzburg-Landau equations of superconductivity
    Zaouch, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06): : 905 - 918
  • [34] Asymptotics for the time dependent Ginzburg-Landau equations
    Fan, JS
    Ding, SJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 241 - 255
  • [35] Extended Time-Dependent Ginzburg-Landau Theory
    Grigorishin, Konstantin V.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 203 (3-4) : 262 - 308
  • [36] Universal time-dependent Ginzburg-Landau theory
    Kapustin, Anton
    Mrini, Luke
    PHYSICAL REVIEW B, 2023, 107 (14)
  • [37] Time-dependent Ginzburg-Landau theory and duality
    Schakel, AMJ
    TOPOLOGICAL DEFECTS AND THE NON-EQUILIBRIUM DYNAMICS OF SYMMETRY BREAKING PHASE TRANSITIONS, 2000, 549 : 213 - 238
  • [38] Simulating vortex motion in superconducting films with the time-dependent Ginzburg-Landau equations
    Coskun, E
    Kwong, MK
    NONLINEARITY, 1997, 10 (03) : 579 - 593
  • [39] An exact solution of the time-dependent Ginzburg-Landau equations for propagating fronts in superconductor
    Islam, J. N.
    Islam, M. R.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2006, 80 (06): : 637 - 640
  • [40] A GENERALIZED SCALAR AUXILIARY VARIABLE METHOD FOR THE TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS
    司智勇
    Acta Mathematica Scientia, 2024, 44 (02) : 650 - 670