φ-BEST PROXIMITY POINT THEOREMS IN METRIC SPACES WITH APPLICATIONS IN PARTIAL METRIC SPACES

被引:0
作者
Imdad, Mohammad [1 ]
Saleh, Hayel N. [1 ]
Alfaqih, Waleed M. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2020年 / 10卷 / 01期
关键词
(F; phi; theta)-proximal contraction; theta)-weak proximal contraction; phi-best proximity point; partial metric space; CONVERGENCE; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notions of (F, phi, theta)-proximal contraction and (F, phi, theta)-weak proximal contraction for non-self mappings and utilize the same to prove some existence and uniqueness of phi-best proximity point for such mappings. Some illustrative examples are also given to exhibit the utility of our results. As an application of the concept of phi-best proximity point, we deduce some best proximity point theorems in the context of partial metric spaces.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 13 条
[1]   Global Optimal Solutions of Noncyclic Mappings in Metric Spaces [J].
Abkar, A. ;
Gabeleh, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (02) :298-305
[2]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[3]   Discontinuity of Control Function in the (F; φ; θ)- Contraction in Metric Spaces [J].
Asadi, Mehdi .
FILOMAT, 2017, 31 (17) :5427-5433
[4]   Best proximity point theorems [J].
Basha, S. Sadiq .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (11) :1772-1781
[5]   Best proximity points for cyclic Meir-Keeler contractions [J].
Di Bari, Cristina ;
Suzuki, Tomonari ;
Vetro, Calogero .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3790-3794
[6]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[7]  
Haddadi M., 2017, ASIAN EUROPEAN J MAT
[8]  
Isik H., 2017, J FIX POINT THEORY A, P1
[9]   Fixed point theory in partial metric spaces via φ-fixed point's concept in metric spaces [J].
Jleli, Mohamed ;
Samet, Bessem ;
Vetro, Calogero .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[10]   Best Proximity Point Theorems for p-Cyclic Meir-Keeler Contractions [J].
Karpagam, S. ;
Agrawal, Sushama .
FIXED POINT THEORY AND APPLICATIONS, 2009,