Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer

被引:146
|
作者
Habibollahzade, Ali [1 ]
Gholamian, Ehsan [1 ]
Houshfar, Ehsan [1 ]
Behzadi, Amirmohammad [1 ]
机构
[1] Univ Tehran, Sch Mech Engn, Coll Engn, POB 11155-4563, Tehran, Iran
关键词
Solid oxide fuel cell; Stirling; Multi-objective optimization; Gasification; Anode/cathode recycle; Electrolyzer; POWER-GENERATION SYSTEM; THERMODYNAMIC ANALYSIS; HYDROGEN-PRODUCTION; GAS-TURBINE; PEM ELECTROLYZER; EXERGY ANALYSIS; HYBRID SYSTEM; WASTE HEAT; SOFC; ENERGY;
D O I
10.1016/j.enconman.2018.06.061
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of this study is to increase the power generation/exergy efficiency and reduce total product cost/environmental contamination of solid oxide fuel cells. Accordingly, three integrated systems are proposed and analyzed from energy, exergy, exergoeconomic, and environmental viewpoints through the parametric study. The first model assesses the combination of a gasifier with a solid oxide fuel cell. In the second model, waste heat of the first model is reused in the Stirling engine to enhance the efficiency and power generation. The last model proposes reuse of the surplus power of the Stirling engine in a proton exchange membrane electrolyzer for hydrogen production. Considering total product cost, exergy efficiency, and hydrogen production rate as the objective functions, a multi-objective optimization is applied based on the genetic algorithm. The results indicate that at the optimum operating condition, the exergy efficiency of the model (a), (b), and (c) is 28.51%, 39.51%, and 38.03%, respectively. Corresponding values for the energy efficiency and the emission rate of the models are 31.13%, 67.38%, 66.41%, 1.147 t/MWh, 0.7113 t/MWh, 0.7694 t/MWh. At the optimum solution point, total product cost associated with the model (a), (b), and (c) is 19.33 $/GJ, 18.91 $/GJ, and 24.93 $/GJ, respectively. If the hydrogen production rate and total product cost considered as the objective functions, at optimum solution point, the rate of hydrogen production and overall product cost would be 56.5 kg/day and 41.76 $/GJ, respectively. Overall, the proposed integrated systems demonstrate decent functionality both in thermodynamic, environmental, and economic aspects.
引用
收藏
页码:1116 / 1133
页数:18
相关论文
共 50 条
  • [21] Biomass gasification process integration with Stirling engine, solid oxide fuel cell, and multi-effect distillation
    Armin Ebrahimi
    Bahram Ghorbani
    Masoud Ziabasharhagh
    Mohammad Javad Rahimi
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 1283 - 1302
  • [22] Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system
    Shirazi, Alec
    Aminyavari, Mehdi
    Najafi, Behzad
    Rinaldi, Fabio
    Razaghi, Majid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (24) : 19111 - 19124
  • [23] Multi-objective optimization of a novel biomass-based multigeneration system consisting of liquid natural gas open cycle and proton exchange membrane electrolyzer
    Taheri, Muhammad Hadi
    Khani, Leyla
    Mohammadpourfard, Mousa
    Aminfar, Habib
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16806 - 16823
  • [24] Multi-objective optimization of a clean combined system based gasifier-solid oxide fuel cell
    Zhou, Zongming
    Dhahad, Hayder A.
    Almohana, Abdulaziz Ibrahim
    Almojil, Sattam Fahad
    Alali, Abdulrhman Fahmi
    Anqi, Ali E.
    Rajhi, Ali A.
    Alamri, Sagr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (43) : 18648 - 18662
  • [25] Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms
    Luo, Zhongyang
    Sultan, Umair
    Ni, Mingjiang
    Peng, Hao
    Shi, Bingwei
    Xiao, Gang
    RENEWABLE ENERGY, 2016, 94 : 114 - 125
  • [26] Effective multi-objective optimization of Stirling engine systems
    Punnathanam, Varun
    Kotecha, Prakash
    APPLIED THERMAL ENGINEERING, 2016, 108 : 261 - 276
  • [27] Multi-objective optimization and dynamic characteristic analysis of solid oxide fuel cell- Supercritical carbon dioxide brayton cycle hybrid system
    Wang, Di
    Zhang, Yuxin
    Sun, Lingfang
    Han, Xinrui
    Zhou, Yunlong
    Wang, Yanhong
    Sun, Lu
    ENERGY, 2024, 313
  • [28] Multi-objective optimization with thermodynamic analysis of an integrated energy system based on biomass and solar energies
    Wang, Jiangjiang
    Dong, Fuxiang
    Ma, Zherui
    Chen, Haiyue
    Yan, Rujing
    Klemes, Jiri Jaromir
    JOURNAL OF CLEANER PRODUCTION, 2021, 324
  • [29] Thermodynamic analysis and multi-objective optimization performance of solid oxide fuel cell–Ericsson heat engine–reverse osmosis desalination
    Omolbanin Shakouri
    Mamdouh El Haj Assad
    Emin Açıkkalp
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 1075 - 1090
  • [30] Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization
    Cheng, Cai
    Cherian, Jacob
    Sial, Muhammad Safdar
    Zaman, Umer
    Niroumandi, Hosein
    ENERGY, 2021, 224