Learning unknown ODE models with Gaussian processes

被引:0
作者
Heinonen, Markus [1 ,2 ]
Yildiz, Cagatay [1 ]
Mannerstrom, Henrik [1 ]
Intosalmi, Jukka [1 ]
Lahdesmaki, Harri [1 ]
机构
[1] Aalto Univ, Espoo, Finland
[2] Helsinki Inst Informat Technol HIIT, Helsinki, Finland
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80 | 2018年 / 80卷
基金
芬兰科学院;
关键词
PARAMETER-ESTIMATION; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In conventional ODE modelling coefficients of an equation driving the system state forward in time are estimated. However, for many complex systems it is practically impossible to determine the equations or interactions governing the underlying dynamics. In these settings, parametric ODE model cannot be formulated. Here, we overcome this issue by introducing a novel paradigm of non-parametric ODE modelling that can learn the underlying dynamics of arbitrary continuous-time systems without prior knowledge. We propose to learn non-linear, unknown differential functions from state observations using Gaussian process vector fields within the exact ODE formalism. We demonstrate the model's capabilities to infer dynamics from sparse data and to simulate the system forward into future.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Sorad: a systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome time-course measurements [J].
Aijo, Tarmo ;
Granberg, Kirsi ;
Lahdesmaki, Harri .
BIOINFORMATICS, 2013, 29 (10) :1283-1291
[2]   Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics [J].
Aijo, Tarmo ;
Lahdesmaki, Harri .
BIOINFORMATICS, 2009, 25 (22) :2937-2944
[3]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[4]  
[Anonymous], 2004, KERNEL METHODS PATTE
[5]  
[Anonymous], 2011, Advances in Neural Information Processing Systems
[6]  
Archambeau C., 2007, GAUSSIAN PROCESSES P
[7]   The Helmholtz-Hodge Decomposition-A Survey [J].
Bhatia, Harsh ;
Norgard, Gregory ;
Pascucci, Valerio ;
Bremer, Peer-Timo .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (08) :1386-1404
[8]  
Butcher J., 2016, NUMERICAL METHODS OR, DOI DOI 10.1002/9781119121534
[9]  
Calderhead B, 2008, ADV NEURAL INF PROCE, V21, P217
[10]  
De Hoon Michiel JL, 2002, BIOCOMPUTING 2003, P17