Prediction of In-Hospital Cardiac Arrest Using Shallow and Deep Learning

被引:10
|
作者
Chae, Minsu [1 ]
Han, Sangwook [1 ]
Gil, Hyowook [2 ]
Cho, Namjun [2 ]
Lee, Hwamin [3 ]
机构
[1] Soonchunhyang Univ, Dept Software Convergence, Asan 31538, South Korea
[2] Soonchunhyang Univ, Cheonan Hosp, Dept Internal Med, Cheonan 31151, South Korea
[3] Soonchunhyang Univ, Dept Comp Software Engn, Asan 31538, South Korea
基金
新加坡国家研究基金会;
关键词
in-hospital cardiac arrest; machine learning; deep learning; PERFORMANCE EVALUATION; TRACK; EVENTS;
D O I
10.3390/diagnostics11071255
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sudden cardiac arrest can leave serious brain damage or lead to death, so it is very important to predict before a cardiac arrest occurs. However, early warning score systems including the National Early Warning Score, are associated with low sensitivity and false positives. We applied shallow and deep learning to predict cardiac arrest to overcome these limitations. We evaluated the performance of the Synthetic Minority Oversampling Technique Ratio. We evaluated the performance using a Decision Tree, a Random Forest, Logistic Regression, Long Short-Term Memory model, Gated Recurrent Unit model, and LSTM-GRU hybrid models. Our proposed Logistic Regression demonstrated a higher positive predictive value and sensitivity than traditional early warning systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest
    Mayampurath, Anoop
    Hagopian, Raffi
    Venable, Laura
    Carey, Kyle
    Edelson, Dana
    Churpek, Matthew
    CRITICAL CARE MEDICINE, 2022, 50 (02) : E162 - E172
  • [32] In-hospital cardiac arrest in patients with coronavirus 2019
    Mitchell, Oscar J. L.
    Yuriditsky, Eugene
    Johnson, Nicholas J.
    Doran, Olivia
    Buckler, David G.
    Neefe, Stacie
    Seethala, Raghu R.
    Motov, Sergey
    Moskowitz, Ari
    Lee, Jarone
    Griffin, Kelly M.
    Shashaty, Michael G. S.
    Horowitz, James M.
    Abella, Benjamin S.
    RESUSCITATION, 2021, 160 : 72 - 78
  • [33] Outcomes of In-hospital Cardiac Arrest A Review of the Evidence
    DiLibero, Justin
    Misto, Kara
    CRITICAL CARE NURSING CLINICS OF NORTH AMERICA, 2021, 33 (03) : 343 - 356
  • [34] Electrocardiogram characteristics prior to in-hospital cardiac arrest
    Mina Attin
    Gregory Feld
    Hector Lemus
    Kayvan Najarian
    Sharad Shandilya
    Lu Wang
    Pouya Sabouriazad
    Chii-Dean Lin
    Journal of Clinical Monitoring and Computing, 2015, 29 : 385 - 392
  • [35] In-hospital cardiac arrest and basic life support
    Domonkos, Kiss
    Gabor, Frituz
    Eniko, Kovacs
    Csaba, Dioszeghy
    ORVOSI HETILAP, 2023, 164 (12) : 449 - 453
  • [36] Aetiology of in-hospital cardiac arrest on general wards
    Tirkkonen, Joonas
    Hellevuo, Heidi
    Olkkola, Klaus T.
    Hoppu, Sanna
    RESUSCITATION, 2016, 107 : 19 - 24
  • [37] Socioeconomic status and risk of in-hospital cardiac arrest
    Stankovic, Nikola
    Holmberg, Mathias J.
    Granfeldt, Asger
    Andersen, Lars W.
    RESUSCITATION, 2022, 177 : 69 - 77
  • [38] Electrocardiogram characteristics prior to in-hospital cardiac arrest
    Attin, Mina
    Feld, Gregory
    Lemus, Hector
    Najarian, Kayvan
    Shandilya, Sharad
    Wang, Lu
    Sabouriazad, Pouya
    Lin, Chii-Dean
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2015, 29 (03) : 385 - 392
  • [39] Deep Learning in the Medical Domain: Predicting Cardiac Arrest Using Deep Learning
    Lee, Youngnam
    Kwon, Joon-myoung
    Lee, Yeha
    Park, Hyunho
    Cho, Hugh
    Park, Jinsik
    ACUTE AND CRITICAL CARE, 2018, 33 (03) : 117 - 120
  • [40] Sudden cardiac arrest prediction via deep learning electrocardiogram analysis
    Oberdier, Matt T.
    Neri, Luca
    Orro, Alessandro
    Carrick, Richard T.
    Nobile, Marco S.
    Jaipalli, Sujai
    Khan, Mariam
    Diciotti, Stefano
    Borghi, Claudio
    Halperin, Henry R.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2025, 6 (02): : 170 - 179