A survey over X-ray absorption methods in homogeneous catalysis research is given with the example of the iron-catalyzed Michael addition reaction. A thorough investigation of the catalytic cycle was possible by combination of conventional X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and multi-dimensional spectroscopy. The catalytically active compound formed in the first step of the Michael reaction of methyl vinyl ketone with 2-oxocyclopentanecarboxylate (1) could be elucidated in situ by RIXS spectroscopy, and the reduced catalytic activity of FeCl(3)center dot 6H(2)O (2) compared to Fe(ClO(4))(3)center dot 9H(2)O (3) could be further explained by the formation of a [Fe(III)Cl(4)(-)](3)[Fe(III)(1-H)(2)(H(2)O)(2)(+)][H(+)](2) complex. Chloride was identified as catalyst poison with a combined XAS-UV/vis study, which revealed that Cl(-) binds quantitatively to the available iron centers that are deactivated by formation of [FeCl4(-)]. Operando studies in the course of the reaction of methyl vinyl ketone with 1 by combined XAS-Raman spectroscopy allowed the exclusion of changes in the oxidation state and the octahedral geometry at the iron site; a reaction order of two with respect to methyl vinyl ketone and a rate constant of k - 1.413 min(-2) were determined by analysis of the C=C and C=O vibration band. Finally, a dedicated experimental set-up for three-dimensional spectroscopic studies (XAS, UV/vis and Raman) of homogeneous catalytic reactions under laboratory conditions, which emerged from the discussed investigations, is presented.