Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem

被引:9
作者
Cliffe, K. Andrew [1 ]
Hall, Edward J. C. [1 ]
Houston, Paul [1 ]
Phipps, Eric T. [2 ]
Salinger, Andrew G. [2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA
基金
英国工程与自然科学研究理事会;
关键词
Bifurcation theory; Bratu problem; a posteriori error estimation; adaptivity; discontinuous Galerkin methods; ELLIPTIC EIGENVALUE PROBLEMS; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATIONS; NUMERICAL COMPUTATION; NONLINEAR PROBLEMS; BRANCH-POINTS; EQUATIONS;
D O I
10.4208/cicp.290709.120210a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
引用
收藏
页码:845 / 865
页数:21
相关论文
共 50 条
[41]   Exploring Automated Adaptivity and Error Control [J].
Rognes, Marie E. ;
Logg, Anders .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :794-797
[42]   A Posteriori Error Estimates of a Weakly Over-Penalized Symmetric Interior Penalty Method for Elliptic Eigenvalue Problems [J].
Zeng, Yuping ;
Chen, Jinru ;
Wang, Feng .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (04) :327-341
[43]   A posteriori error analysis and adaptivity for a VEM discretization of the Navier-Stokes equations [J].
Canuto, Claudio ;
Rosso, Davide .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
[44]   A POSTERIORI ERROR ANALYSIS FOR HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Zhang, Wujun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :676-693
[45]   A posteriori error analysis for discontinuous Galerkin methods for time discrete semilinear parabolic problems [J].
Sabawi, Mohammad .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46) :283-301
[46]   Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem [J].
Houston, P ;
Schötzau, D ;
Wihler, TP .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :347-370
[47]   A priori and a posteriori error analyses of an HDG method for the Brinkman problem [J].
Gatica, Luis F. ;
Sequeira, Filander A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) :1191-1212
[48]   An a-posteriori error estimate for hp-adaptive DG methods for elliptic eigenvalue problems on anisotropically refined meshes [J].
Giani, Stefano ;
Hall, Edward .
COMPUTING, 2013, 95 (01) :S319-S341
[49]   A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE [J].
Yuan, Lei ;
Yang, Danping .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (04) :525-542
[50]   A Review of Unified A Posteriori Finite Element Error Control [J].
Carstensen, C. ;
Eigel, M. ;
Hoppe, R. H. W. ;
Loebhard, C. .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (04) :509-558