Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem

被引:9
作者
Cliffe, K. Andrew [1 ]
Hall, Edward J. C. [1 ]
Houston, Paul [1 ]
Phipps, Eric T. [2 ]
Salinger, Andrew G. [2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA
基金
英国工程与自然科学研究理事会;
关键词
Bifurcation theory; Bratu problem; a posteriori error estimation; adaptivity; discontinuous Galerkin methods; ELLIPTIC EIGENVALUE PROBLEMS; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATIONS; NUMERICAL COMPUTATION; NONLINEAR PROBLEMS; BRANCH-POINTS; EQUATIONS;
D O I
10.4208/cicp.290709.120210a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.
引用
收藏
页码:845 / 865
页数:21
相关论文
共 50 条
[31]   A posteriori error analysis and adaptivity for a VEM discretization of the Navier–Stokes equations [J].
Claudio Canuto ;
Davide Rosso .
Advances in Computational Mathematics, 2023, 49
[32]   A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BENARD PROBLEM [J].
Chang, Yanzhen ;
Yang, Danping .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (01) :68-87
[33]   A-posteriori error estimates for optimal control problems with state and control constraints [J].
Roesch, Arnd ;
Wachsmuth, Daniel .
NUMERISCHE MATHEMATIK, 2012, 120 (04) :733-762
[34]   Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity [J].
Georgoulis, Emmanuil H. ;
Hall, Edward ;
Houston, Paul .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (09) :2179-2194
[35]   RESIDUAL-BASED A POSTERIORI ERROR ESTIMATES FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE BIHARMONIC PROBLEM [J].
Dong, Zhaonan ;
Mascotto, Lorenzo ;
Sutton, Oliver J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) :1273-1298
[36]   A posteriori error estimation and space-time adaptivity for a linear stochastic PDE with additive noise [J].
Majee, Ananta K. ;
Prohl, Andreas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) :1526-1567
[37]   An a posteriori error analysis for an optimal control problem involving the fractional Laplacian [J].
Antil, Harbir ;
Otarola, Enrique .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) :198-226
[38]   ERROR CONTROL AND ADAPTIVITY FOR A VARIATIONAL MODEL PROBLEM DEFINED ON FUNCTIONS OF BOUNDED VARIATION [J].
Bartels, Soeren .
MATHEMATICS OF COMPUTATION, 2015, 84 (293) :1217-1240
[39]   A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem [J].
Baensch, E. ;
Karakatsani, F. ;
Makridakis, C. G. .
CALCOLO, 2018, 55 (02)
[40]   A posteriori error analysis for finite element approximations of parabolic optimal control problems with measure data [J].
Shakya, Pratibha ;
Sinha, Rajen Kumar .
APPLIED NUMERICAL MATHEMATICS, 2019, 136 :23-45