CONSTRUCTION OF A BRAIDED MONOIDAL CATEGORY FOR BRZEZINSKI CROSSED COPRODUCTS OF HOPF π-ALGEBRAS

被引:3
作者
Ma , Tianshui [1 ]
Li , Haiying [1 ]
Xu , Shaoxian [2 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Nanyang Normal Univ, Sch Math & Stat, Nanyang 473061, Peoples R China
基金
中国博士后科学基金;
关键词
braided monoidal category; crossed coproduct; quasitriangular Hopf pi-algebra; COALGEBRAS; PRODUCTS;
D O I
10.4064/cm6987-9-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a group, C, H Hopf pi-algebras, and g(alpha) : H. and T-alpha : C-alpha circle times H-alpha -> H-alpha circle times C-alpha, families of linear maps. We give necessary and sufficient conditions for the family of Brzezinski crossed coproduct coalgebras {C-alpha #(g alpha)(T alpha) H-alpha}(alpha is an element of pi), to be a Hopf pi-algebra. Moreover, necessary and sufficient conditions for the Brzezinski crossed coproduct Hopf pi-algebra C(sic)(T)(g) (pi) H to be quasitriangular are derived, and in this case, the left pi-module category c(sic)(T)(6) M-pi(Pi) is a braided monoidal category.
引用
收藏
页码:309 / 323
页数:15
相关论文
共 31 条