(SDGFI) Student's Demographic and Geographic Feature Identification Using Machine Learning Techniques for Real-Time Automated Web Applications

被引:3
作者
Verma, Chaman [1 ]
Illes, Zoltan [1 ]
Kumar, Deepak [2 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Dept Media & Educ Informat, H-1053 Budapest, Hungary
[2] Chandigarh Univ, Apex Inst Technol, Mohali 140413, Punjab, India
关键词
classification; demographic; geographic; machine learning; SDI; student; technology response; TECHNOLOGY; ALGORITHM; NETWORK;
D O I
10.3390/math10173093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nowadays, Google Forms is becoming a cutting-edge tool for gathering research data in the educational domain. Several researchers are using real-time web applications to collect the responses of respondents. Demographic and geographic features are the most important in the researcher's study. Identifying students' demographics (gender, age-group, course, institution, or university) and geographic features (locality and country) is a challenging problem in machine learning. We proposed a novel predictive algorithm, Student Demographic Identification (SDI), to identify a student's demographic features (age-group, course) with the highest accuracy. SDI has been tested on primary reliable samples. SDI has also been compared with the traditional machine algorithms Random Forest (RF), and Logistic Regression (LR), and Radial Support Vector Machine (R-SVM). The proposed algorithm significantly improved the performance metrics such as accuracy, F1-score, precision, recall, and Matthews Correlation Coefficient (MCC) of these classifiers. We also proposed significant features to identify students' age-group, course, and gender. SDI has identified the student's age group with an accuracy of 96% and the course with an accuracy of 97%. Gradient Boosting (GB) has improved the accuracy of LR, R-SVM, and RF to predict the student's gender. Also, the RF algorithm with the support of GB attained the highest accuracy of 98% to identify the gender of the students. All three classifiers have also identified the student's locality and institution with an identical accuracy of 99%. Our proposed SDI algorithm may be useful for real-time survey applications to predict students' demographic features.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Optimizing Electric Vehicle Efficiency with Real-Time Telemetry using Machine Learning
    Rao, Aryaman
    Gupta, Harshit
    Singh, Parth
    Mittal, Shivam
    Singh, Utkarsh
    Vishwakarma, Dinesh Kumar
    2024 10TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING, ICMRE, 2024, : 213 - 219
  • [42] Panic Detection Using Machine Learning and Real-Time Biometric and Spatiotemporal Data
    Lazarou, Ilias
    Kesidis, Anastasios L.
    Hloupis, George
    Tsatsaris, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (11)
  • [43] Real-Time Slip Detection and Control Using Machine Learning
    Pereira Tavares, Alexandre Henrique
    Oliveira, S. R. J.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1363 - 1369
  • [44] Prediction of Student's Educational Performance Using Machine Learning Techniques
    Rao, B. Mallikarjun
    Murthy, B. V. Ramana
    DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 429 - 440
  • [45] Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection
    AlShorman, Omar
    Masadeh, Mahmoud
    Bin Heyat, Md Belal
    Akhtar, Faijan
    Almahasneh, Hossam
    Ashraf, Ghulam Md
    Alexiou, Athanasios
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2022, 21 (01)
  • [46] Real-time particle pollution sensing using machine learning
    Grant-Jacob, James A.
    Mackay, Benita S.
    Baker, James A. G.
    Heath, Daniel J.
    Xie, Yunhui
    Loxham, Matthew
    Eason, Robert W.
    Mills, Ben
    OPTICS EXPRESS, 2018, 26 (21): : 27237 - 27246
  • [47] Using Machine Learning Techniques to Earlier Predict Student's Performance
    Tanuar, Evawaty
    Heryadi, Yaya
    Lukas
    Abbas, Bahtiar Saleh
    Gaol, Ford Lumban
    2018 INDONESIAN ASSOCIATION FOR PATTERN RECOGNITION INTERNATIONAL CONFERENCE (INAPR), 2018, : 85 - 89
  • [48] REAL-TIME SENTIMENT ANALYSIS ON SOCIAL NETWORKS USING META-MODEL AND MACHINE LEARNING TECHNIQUES
    Xiao, Shixiao
    Alobaedy, Mustafa Muwafak
    Goyal, S. B.
    Singla, Sanjay
    Kang, Sandeep
    Chadha, Raman
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2023, 24 (04): : 819 - 834
  • [49] Real-time automatic detection and classification of groundnut leaf disease using hybrid machine learning techniques
    K. Suresh
    Multimedia Tools and Applications, 2023, 82 : 1935 - 1963
  • [50] Real-time defect detection in 3D printing using machine learning
    Khan, Mohammad Farhan
    Alam, Aftaab
    Siddiqui, Mohammad Ateeb
    Alam, Mohammad Saad
    Rafat, Yasser
    Salik, Nehal
    Al-Saidan, Ibrahim
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 521 - 528