Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrodinger equation

被引:47
作者
Zhou, Huijuan [1 ]
Chen, Yong [1 ,2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Reverse-space-time derivative nonlinear Schrodinger equation; Darboux transformation; Breathers and rogue waves on the double-periodic background; SELF-PHASE MODULATION; KAUP-NEWELL; DARBOUX TRANSFORMATION; SOLITONS; DYNAMICS; AKNS;
D O I
10.1007/s11071-021-06953-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present investigation, the breathers and rogue waves on the double-periodic background are successfully constructed by Darboux transformation using a plane wave seed solution. Firstly, the Darboux transformation for the reverse-space-time derivative nonlinear Schrodinger equation is constructed. Secondly, periodic solutions, breathers, double-periodic solutions, breathers on the periodic and double-periodic background are derived by n-fold Darboux transformation. Thirdly, the higher-order rogue waves on the periodic and double-periodic background are constructed by semi-degenerate Darboux transformation. In addition, the dynamic behaviors of the solutions are plotted to show some interesting new solution structures.
引用
收藏
页码:3437 / 3451
页数:15
相关论文
共 63 条
[1]   INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION [J].
Ablowitz, M. J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Z. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (03) :1241-1267
[2]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[5]   SOLITON PROPAGATION IN 3 COUPLED NONLINEAR SCHRODINGER-EQUATIONS [J].
ABRAROV, RM ;
CHRISTIANSEN, PL ;
DARMANYAN, SA ;
SCOTT, AC ;
SOERENSEN, MP .
PHYSICS LETTERS A, 1992, 171 (5-6) :298-302
[6]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[7]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[8]   Characterizing JONSWAP rogue waves and their statistics via inverse spectral data [J].
Calini, Annalisa ;
Schober, Constance M. .
WAVE MOTION, 2017, 71 :5-17
[9]   Rogue waves on the double-periodic background in the focusing nonlinear Schrodinger equation [J].
Chen, Jinbing ;
Pelinovsky, Dmitry E. ;
White, Robert E. .
PHYSICAL REVIEW E, 2019, 100 (05)
[10]   Rogue periodic waves of the modified KdV equation [J].
Chen, Jinbing ;
Pelinovsky, Dmitry E. .
NONLINEARITY, 2018, 31 (05) :1955-1980