Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a Comparative Study

被引:48
作者
Mercan, Ezgi [1 ]
Aksoy, Selim [2 ]
Shapiro, Linda G. [1 ]
Weaver, Donald L. [3 ]
Brunye, Tad T. [4 ]
Elmore, Joann G. [5 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Paul G Allen Ctr Comp, 185 Stevens Way, Seattle, WA 98195 USA
[2] Bilkent Univ, Dept Comp Engn, TR-06800 Ankara, Turkey
[3] Univ Vermont, Dept Pathol, Burlington, VT 05405 USA
[4] Tufts Univ, Dept Psychol, Medford, MA 02155 USA
[5] Univ Washington, Dept Med, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
Digital pathology; Medical image analysis; Computer vision; Region of interest; Whole slide imaging; SEGMENTATION;
D O I
10.1007/s10278-016-9873-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Whole slide digital imaging technology enables researchers to study pathologists' interpretive behavior as they view digital slides and gain new understanding of the diagnostic medical decision-making process. In this study, we propose a simple yet important analysis to extract diagnostically relevant regions of interest (ROIs) from tracking records using only pathologists' actions as they viewed biopsy specimens in the whole slide digital imaging format (zooming, panning, and fixating). We use these extracted regions in a visual bag-of-words model based on color and texture features to predict diagnostically relevant ROIs on whole slide images. Using a logistic regression classifier in a cross-validation setting on 240 digital breast biopsy slides and viewport tracking logs of three expert pathologists, we produce probability maps that show 74 % overlap with the actual regions at which pathologists looked. We compare different bag-of-words models by changing dictionary size, visual word definition (patches vs. superpixels), and training data (automatically extracted ROIs vs. manually marked ROIs). This study is a first step in understanding the scanning behaviors of pathologists and the underlying reasons for diagnostic errors.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 50 条
[1]  
Abbey CK, 2012, SPIE MED IMAGING
[2]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[3]   Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel [J].
Allison, Kimberly H. ;
Reisch, Lisa M. ;
Carney, Patricia A. ;
Weaver, Donald L. ;
Schnitt, Stuart J. ;
O'Malley, Frances P. ;
Geller, Berta M. ;
Elmore, Joann G. .
HISTOPATHOLOGY, 2014, 65 (02) :240-251
[4]  
[Anonymous], 2003, P 9 IEEE INT C COMP
[5]  
Bahlmann C, 2012, PROG BIOMED OPT IMAG, P8315
[6]   Multi-Field-of-View Framework for Distinguishing Tumor Grade in ER plus Breast Cancer From Entire Histopathology Slides [J].
Basavanhally, Ajay ;
Ganesan, Shridar ;
Feldman, Michael ;
Shih, Natalie ;
Mies, Carolyn ;
Tomaszewski, John ;
Madabhushi, Anant .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (08) :2089-2099
[7]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[8]  
Bejnordi BE, 2015, MULTISCALE SUPERPIXE, V9420
[9]  
Brunye TT, 2014, PLOS ONE, V98
[10]   Morphometic analysis of TCGA glioblastoma multiforme [J].
Chang, Hang ;
Fontenay, Gerald V. ;
Han, Ju ;
Cong, Ge ;
Baehner, Frederick L. ;
Gray, Joe W. ;
Spellman, Paul T. ;
Parvin, Bahram .
BMC BIOINFORMATICS, 2011, 12