A modified Lorentz-Transformation-based gravity model confirming basic GRT experiments

被引:9
作者
Broekaert, J [1 ]
机构
[1] Vrije Univ Brussels, CLEA FUND, Brussels, Belgium
关键词
modified Lorentz transformations; scalar gravitation;
D O I
10.1007/s10701-005-4567-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Implementing Poincare's geometric conventionalism a scalar Lorentz-covariant gravity model is obtained based on gravitationally modified Lorentz transformations (or GMLT). The modification essentially consists of an appropriate space-time and momentum-energy scaling ("normalization") relative to a nondynamical flat background geometry according to an isotropic, nonsingular gravitational affecting function Phi(r). Elimination of the gravitationally unaffected S-0 perspective by local composition of space-time GMLT recovers the local Minkowskian metric and thus preserves the invariance of the locally observed velocity of light. The associated energy-momentum GMLT provides a covariant Hamiltonian description for test particles and photons which, in a static gravitational field configuration, endorses the four 'basic' experiments for testing General Relativity Theory: gravitational (i) deflection of light, (ii) precession of perihelia, (iii) delay of radar echo, (iv) shift of spectral lines. The model recovers the Lagrangian of the Lorentz-Poincare gravity model by Torgny Sjodin and integrates elements of the precursor gravitational theories, with spatially Variable Speed of Light (VSL) by Einstein and Abraham, and gravitationally variable mass by Nordstrom.
引用
收藏
页码:839 / 864
页数:26
相关论文
共 63 条
[1]  
Abraham M, 1912, PHYS Z, V13, P793
[2]  
Abraham M, 1912, PHYS Z, V13, P311
[3]  
Abraham M, 1912, PHYS Z, V13, P310
[4]  
Abraham M, 1912, PHYS Z, V13, P1
[5]  
Abraham M, 1912, ANN PHYS-BERLIN, V38, P1058
[6]  
ABRAHAM M, 1912, ANN PHYS-LEIPZIG, V38, P444
[7]  
ABRAHAM M, 1912, ARCH MATH PHYS, V3, P193
[8]   Time varying speed of light as a solution to cosmological puzzles [J].
Albrecht, A ;
Magueijo, J .
PHYSICAL REVIEW D, 1999, 59 (04)
[9]  
[Anonymous], ESSENTIAL RELATIVITY
[10]  
Arminjon M., 1998, Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee, V43, P135