Quantum group, Bethe ansatz equations, and Bloch wave functions in magnetic fields

被引:27
作者
Hatsugai, Y
Kohmoto, M
Wu, YS
机构
[1] UNIV TOKYO,INST SOLID STATE PHYS,MINATO KU,TOKYO 106,JAPAN
[2] UNIV UTAH,DEPT PHYS,SALT LAKE CITY,UT 84112
来源
PHYSICAL REVIEW B | 1996年 / 53卷 / 15期
关键词
D O I
10.1103/PhysRevB.53.9697
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The wave functions for a two-dimensional Bloch electron in uniform magnetic fields at the mid-band points are studied by exploiting a connection to the quantum group U-q(sl(2)): A linear combination of its generators gives the Hamiltonian. We apply both analytic and numerical methods to obtain and analyze the wave functions, by solving the functional Bethe ansatz equations first proposed by Wiegmann and Zabrodin on the basis of the above observation. The semiclassical case with the flux per plaquette phi=1/Q is analyzed in detail, by exploring a structure of the Bethe ansatz equations. We also reveal the multifractal structure of the solutions to Bethe ansatz equations and corresponding wave functions when phi is irrational, such as the golden or silver mean.
引用
收藏
页码:9697 / 9712
页数:16
相关论文
共 23 条
[1]  
FADEEV L, UNPUB
[2]   MULTIFRACTAL WAVE-FUNCTIONS ON A FIBONACCI LATTICE [J].
FUJIWARA, T ;
KOHMOTO, M ;
TOKIHIRO, T .
PHYSICAL REVIEW B, 1989, 40 (10) :7413-7416
[3]   QUANTIZED HALL CONDUCTANCE, CURRENT-CARRYING EDGE STATES, AND THE EXISTENCE OF EXTENDED STATES IN A TWO-DIMENSIONAL DISORDERED POTENTIAL [J].
HALPERIN, BI .
PHYSICAL REVIEW B, 1982, 25 (04) :2185-2190
[4]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[5]   SINGLE BAND MOTION OF CONDUCTION ELECTRONS IN A UNIFORM MAGNETIC FIELD [J].
HARPER, PG .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1955, 68 (10) :874-878
[6]   EXPLICIT SOLUTIONS OF THE BETHE-ANSATZ EQUATIONS FOR BLOCH ELECTRONS IN A MAGNETIC-FIELD [J].
HATSUGAI, Y ;
KOHMOTO, M ;
WU, YS .
PHYSICAL REVIEW LETTERS, 1994, 73 (08) :1134-1137
[7]   CHERN NUMBER AND EDGE STATES IN THE INTEGER QUANTUM HALL-EFFECT [J].
HATSUGAI, Y .
PHYSICAL REVIEW LETTERS, 1993, 71 (22) :3697-3700
[8]   EDGE STATES IN THE INTEGER QUANTUM HALL-EFFECT AND THE RIEMANN SURFACE OF THE BLOCH FUNCTION [J].
HATSUGAI, Y .
PHYSICAL REVIEW B, 1993, 48 (16) :11851-11862
[9]   SCALING ANALYSIS OF QUASIPERIODIC SYSTEMS - GENERALIZED HARPER MODEL [J].
HIRAMOTO, H ;
KOHMOTO, M .
PHYSICAL REVIEW B, 1989, 40 (12) :8225-8234
[10]   ELECTRONIC SPECTRAL AND WAVE-FUNCTION PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS - A SCALING APPROACH [J].
HIRAMOTO, H ;
KOHMOTO, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (3-4) :281-320