Parameter estimation in groundwater hydrology sing artificial neural networks

被引:29
|
作者
Shigidi, A
Garcia, LA
机构
[1] Sudan Univ Sci & Technol, Khartoum, Sudan
[2] Colorado State Univ, IDS Grp Civil Engn, Ft Collins, CO 80523 USA
关键词
artificial intelligence; ground water; neural networks; parameters; hydrologic models;
D O I
10.1061/(ASCE)0887-3801(2003)17:4(281)
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capability of artificial neural networks to act as universal function approximators has been traditionally used to model problems in which the relation between dependent and independent variables is poorly understood. In this paper, the capability of an artificial neural network to provide a data-driven approximation of the explicit relation between transmissivity and hydraulic head as described by the groundwater flow equation is demonstrated. Techniques are applied to determine the optimal number of nodes and training patterns needed for a neural network to approximate groundwater parameters for a simulated groundwater modeling case study. Furthermore, the paper explains how such an approximation can be used for the purpose of parameter estimation in groundwater hydrology.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [41] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [42] Regularization parameter estimation for feedforward neural networks
    Guo, P
    Lyu, MR
    Chen, CLP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (01): : 35 - 44
  • [43] Neural networks for parameter estimation in intractable models
    Lenzi, Amanda
    Bessac, Julie
    Rudi, Johann
    Stein, Michael L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 185
  • [44] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
    罗浩
    王一军
    叶炜
    钟海
    毛宜钰
    郭迎
    Chinese Physics B, 2022, 31 (02) : 273 - 281
  • [45] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
    Luo, Hao
    Wang, Yi-Jun
    Ye, Wei
    Zhong, Hai
    Mao, Yi-Yu
    Guo, Ying
    CHINESE PHYSICS B, 2022, 31 (02)
  • [46] Three-Phase Induction Motor Electrical Parameter Estimation Using Artificial Neural Networks
    Lourenco, Gabriel
    de Arruda, Gabriel Tavore
    Correia de La Rosa, Victor Emanuel
    Castoldi, Marcelo Favoretto
    Goedtel, Alessandro
    de Souza, Wesley Angelino
    2024 27TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, SPEEDAM 2024, 2024, : 883 - 888
  • [47] Dynamic equivalent of external power system and its parameter estimation through artificial neural networks
    Rahim, AHMA
    Al-Ramadhan, AJ
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (02) : 113 - 120
  • [48] Kinetic parameter estimation from dynamic studies of SPECT/PET using artificial neural networks
    Murase, K
    Mochizuki, T
    Kikuchi, T
    Ikezoe, J
    CAR '98 - COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1998, 1165 : 865 - 865
  • [49] Forecasting groundwater level by artificial neural networks as an alternative approach to groundwater modeling
    Manouchehr Chitsazan
    Gholamreza Rahmani
    Ahmad Neyamadpour
    Journal of the Geological Society of India, 2015, 85 : 98 - 106
  • [50] Forecasting Groundwater Level by Artificial Neural Networks as an Alternative Approach to Groundwater Modeling
    Chitsazan, Manouchehr
    Rahmani, Gholamreza
    Neyamadpour, Ahmad
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2015, 85 (01) : 98 - 106