Parameter estimation in groundwater hydrology sing artificial neural networks

被引:29
|
作者
Shigidi, A
Garcia, LA
机构
[1] Sudan Univ Sci & Technol, Khartoum, Sudan
[2] Colorado State Univ, IDS Grp Civil Engn, Ft Collins, CO 80523 USA
关键词
artificial intelligence; ground water; neural networks; parameters; hydrologic models;
D O I
10.1061/(ASCE)0887-3801(2003)17:4(281)
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capability of artificial neural networks to act as universal function approximators has been traditionally used to model problems in which the relation between dependent and independent variables is poorly understood. In this paper, the capability of an artificial neural network to provide a data-driven approximation of the explicit relation between transmissivity and hydraulic head as described by the groundwater flow equation is demonstrated. Techniques are applied to determine the optimal number of nodes and training patterns needed for a neural network to approximate groundwater parameters for a simulated groundwater modeling case study. Furthermore, the paper explains how such an approximation can be used for the purpose of parameter estimation in groundwater hydrology.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [21] ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY. I: PRELIMINARY CONCEPTS
    Govindaraju, Rao S.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (02) : 115 - 123
  • [22] Artificial neural networks in hydrology. I: Preliminary concepts
    Govindaraju, Rao S.
    1600, American Society of Civil Engineers (05):
  • [23] ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY. II: HYDROLOGIC APPLICATIONS
    Govindaraju, Rao S.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (02) : 124 - 137
  • [24] Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks
    Ishida, Shota
    Fujiwara, Yasuhiro
    Matta, Yuki
    Takei, Naoyuki
    Kanamoto, Masayuki
    Kimura, Hirohiko
    Tsujikawa, Tetsuya
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 2163 - 2180
  • [25] Improvement in parameter estimation of Pareto type II clutter using artificial neural networks
    Alioua, C.
    Mezache, A.
    Soltani, F.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [26] Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
    Sun, XF
    Fan, YZ
    Zhang, FZ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 47 - 53
  • [27] Stellar parameter estimation in O-type stars using artificial neural networks
    Flores, R. M.
    Corral, L. J.
    Fierro-Santillan, C. R.
    Navarro, S. G.
    ASTRONOMY AND COMPUTING, 2023, 45
  • [28] ELECTRIC LOAD PATTERN CLASSIFICATION USING PARAMETER ESTIMATION, CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
    Buitrago, Jaime
    Abdulaal, Ahmed
    Asfour, Shihab
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (04): : 167 - 174
  • [29] Small signal S-parameter estimation of BJTs using artificial neural networks
    Majid, I
    Nadeem, AE
    Azam, FE
    INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 669 - 673
  • [30] Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network
    Singh, RM
    Datta, B
    ENVIRONMENTAL FORENSICS, 2004, 5 (03) : 143 - 153