Parameter estimation in groundwater hydrology sing artificial neural networks

被引:29
|
作者
Shigidi, A
Garcia, LA
机构
[1] Sudan Univ Sci & Technol, Khartoum, Sudan
[2] Colorado State Univ, IDS Grp Civil Engn, Ft Collins, CO 80523 USA
关键词
artificial intelligence; ground water; neural networks; parameters; hydrologic models;
D O I
10.1061/(ASCE)0887-3801(2003)17:4(281)
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capability of artificial neural networks to act as universal function approximators has been traditionally used to model problems in which the relation between dependent and independent variables is poorly understood. In this paper, the capability of an artificial neural network to provide a data-driven approximation of the explicit relation between transmissivity and hydraulic head as described by the groundwater flow equation is demonstrated. Techniques are applied to determine the optimal number of nodes and training patterns needed for a neural network to approximate groundwater parameters for a simulated groundwater modeling case study. Furthermore, the paper explains how such an approximation can be used for the purpose of parameter estimation in groundwater hydrology.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [1] Parameter identification procedure in groundwater hydrology with artificial neural network
    Li, SJ
    Liu, YX
    ADVANCES IN INTELLIGENT COMPUTING, PT 2, PROCEEDINGS, 2005, 3645 : 276 - 285
  • [2] A comparative study of parameter estimation in hydrology modelling: Artificial neural networks and curve fitting approaches
    Rajanayaka, C
    Kulasiri, D
    Samarasinghe, S
    MODSIM 2003: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION, VOLS 1-4: VOL 1: NATURAL SYSTEMS, PT 1; VOL 2: NATURAL SYSTEMS, PT 2; VOL 3: SOCIO-ECONOMIC SYSTEMS; VOL 4: GENERAL SYSTEMS, 2003, : 843 - 848
  • [3] Approaching the inverse problem of parameter estimation in groundwater models by means of artificial neural networks
    Zio, E.
    Progress in Nuclear Energy, 31 (03): : 303 - 315
  • [4] Groundwater Estimation from Major Physical Hydrology Components Using Artificial Neural Networks and Deep Learning
    Afzaal, Hassan
    Farooque, Aitazaz A.
    Abbas, Farhat
    Acharya, Bishnu
    Esau, Travis
    WATER, 2020, 12 (01)
  • [5] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [6] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [7] Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks
    Mohammadi, K.
    PRACTICAL HYDROINFORMATICS: COMPUTATIONAL INTELLIGENCE AND TECHNOLOGICAL DEVELOPMENTS IN WATER APPLICATIONS, 2008, 68 : 127 - 138
  • [8] Application of artificial neural networks to parameter estimation of dynamical systems
    Materka, Andrzej
    Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1994, 1 : 123 - 126
  • [9] ARTIFICIAL NEURAL NETWORKS: A PASSING FAD IN HYDROLOGY?
    Govindaraju, R. S.
    Rao, A. Ramachandra
    JOURNAL OF HYDROLOGIC ENGINEERING, 2000, 5 (03) : 225 - 226
  • [10] Optimal induction machine parameter estimation method with artificial neural networks
    Sema Nur Ipek
    Murat Taskiran
    Nur Bekiroglu
    Engin Aycicek
    Electrical Engineering, 2024, 106 : 1959 - 1975