ON σ-SELF-ORTHOGONAL CONSTACYCLIC CODES OVER Fpm + uFPm

被引:5
作者
Liu, Hongwei [1 ]
Liu, Jingge [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic code; repeated-root code; sigma-self-orthogonal code; sigma-self-dual code; finite commutative chain ring; NEGACYCLIC CODES; CYCLIC CODES; LENGTH 2(S); CONSTRUCTION; PREPARATA; KERDOCK; Z(4);
D O I
10.3934/amc.2020127
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we generalize the notion of self-orthogonal codes to sigma-self-orthogonal codes over an arbitrary finite ring. Then, we study the sigma-self-orthogonality of constacyclic codes of length p(s) over the finite commutative chain ring F-pm+ uF(pm) , where p is a prime, u(2) = 0 and sigma is an arbitrary ring automorphism of F-pm + uF(pm) . We characterize the structure of sigma-dual code of a lambda-constacyclic code of length p(s) over F-pm + uF(pm). Further, the neces-sary and sufficient conditions for a lambda-constacyclic code to be sigma-self-orthogonal are provided. In particular, we determine all sigma-self-dual constacyclic codes of length p(s) over F-pm + uF(pm). In the end of this paper, when p is an odd prime, we extend the results to constacyclic codes of length 2p(s).
引用
收藏
页码:643 / 665
页数:23
相关论文
共 27 条
[21]   Galois hulls of linear codes over finite fields [J].
Liu, Hongwei ;
Pan, Xu .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) :241-255
[22]   Some Repeated-Root Constacyclic Codes Over Galois Rings [J].
Liu, Hongwei ;
Maouche, Youcef .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) :6247-6255
[23]   New entanglement-assisted quantum codes from k-Galois dual codes [J].
Liu, Xiusheng ;
Yu, Long ;
Hu, Peng .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 :21-32
[24]   Galois LCD codes over finite fields [J].
Liu, Xiusheng ;
Fan, Yun ;
Liu, Hualu .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 :227-242
[25]  
Nechaev A.A., 1991, Discrete Mathematics and Applications, V1, P365
[26]  
Pless V., 1972, Discrete Mathematics, V3, P209, DOI 10.1016/0012-365X(72)90034-9
[27]   Cyclic and negacyclic codes over the Galois ring GR(p2, m) [J].
Sobhani, R. ;
Esmaeili, M. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) :2892-2903