Jordan all-derivable points in the algebra of all upper triangular matrices

被引:21
作者
Zhao, Sha [1 ]
Zhu, Jun [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Jordan all-derivable point; Nest algebra; Jordan derivable linear mapping at G; OPERATOR-ALGEBRAS; NEST-ALGEBRAS; LOCAL DERIVATIONS;
D O I
10.1016/j.laa.2010.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T M-n be the algebra of all n x n upper triangular matrices. We say that phi is an element of L(TMn) is a Jordan derivable mapping at G if phi (ST + TS) = phi(S)T + S phi(T) + phi(T)S + T phi(S) for any S, T is an element of TMn, with ST = G. An element G E TNI is called a Jordan all-derivable point of TMn if every Jordan derivable linear mapping phi at G is a derivation. In this paper, we show that every element in TMn is a Jordan all-derivable point. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1922 / 1938
页数:17
相关论文
共 19 条
[1]   Additivity of Jordan multiplicative maps on Jordan operator algebras [J].
An, RL ;
Hou, JC .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01) :45-64
[2]   Characterizations of derivations on triangular rings: Additive maps derivable at idempotents [J].
An, Runling ;
Hou, Jinchuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :1070-1080
[3]  
DAVIDSON KR, 1988, RES NOTES MATH, V191
[4]  
ERDOS J. A., 1968, J. London Math. Soc., V43, P391
[5]  
HADWIN LB, 1994, LINEAR MULTILINEAR A, V0037, P00259, DOI DOI 10.1080/03081089408818328
[6]   Characterisations of derivations on some operator algebras [J].
Jing, W ;
Lu, SJ ;
Li, PT .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) :227-232
[7]  
Jun Zhu, 2002, Acta Mathematica Sinica, V45, P783
[8]   LOCAL DERIVATIONS [J].
KADISON, RV .
JOURNAL OF ALGEBRA, 1990, 130 (02) :494-509
[9]   NEST-ALGEBRAS AND SIMILARITY TRANSFORMATIONS [J].
LARSON, DR .
ANNALS OF MATHEMATICS, 1985, 121 (03) :409-427
[10]   Local automorphisms and derivations on beta(H) [J].
Semrl, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (09) :2677-2680