Interval-valued fuzzy reasoning algorithms based on Schweizer-Sklar t-norms and its application

被引:7
作者
Luo, Minxia [1 ]
Zhao, Ruirui [2 ]
Liu, Bei [1 ]
Liang, Jingjing [1 ]
机构
[1] China Jiliang Univ, Dept Informat & Comp Sci, Hangzhou 310018, Peoples R China
[2] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued fuzzy sets; Schweizer-Sklar t-norms; Triple I algorithms; Normalized Minkowski distance; Robustness; DELTA-EQUALITIES; ROBUSTNESS; INFERENCE; OPERATORS; SYSTEMS; SETS;
D O I
10.1016/j.engappai.2019.103313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the normalized Minkowski distance in Hausdorff metrics, we study the sensitivity of interval-valued Schweizer-Sklar t-norms and their corresponding residual implications. Moreover, we investigate the robustness of interval-valued fuzzy reasoning triple I algorithms based on Schweizer-Sklar operators and illustrate the feasibility of the algorithms by a numerical example. Finally, the interval-valued fuzzy reasoning triple I algorithms are applied to medical diagnosis.
引用
收藏
页数:7
相关论文
共 37 条
[1]   A constructive method for the definition of interval-valued fuzzy implication operators [J].
Alcalde, C ;
Burusco, A ;
Fuentes-González, R .
FUZZY SETS AND SYSTEMS, 2005, 153 (02) :211-227
[2]   DELTA-EQUALITIES OF FUZZY-SETS [J].
CAI, KY .
FUZZY SETS AND SYSTEMS, 1995, 76 (01) :97-112
[3]   Robustness of fuzzy reasoning and δ-equalities of fuzzy sets [J].
Cai, KY .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (05) :738-750
[4]   A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks [J].
Castro, Juan R. ;
Castillo, Oscar ;
Melin, Patricia ;
Rodriguez-Diaz, Antonio .
INFORMATION SCIENCES, 2009, 179 (13) :2175-2193
[5]   An application of intuitionistic fuzzy sets in medical diagnosis [J].
De, SK ;
Biswas, R ;
Roy, AR .
FUZZY SETS AND SYSTEMS, 2001, 117 (02) :209-213
[6]   On the relationship between some extensions of fuzzy set theory [J].
Deschrijver, G ;
Kerre, EE .
FUZZY SETS AND SYSTEMS, 2003, 133 (02) :227-235
[7]   A representation of t-norms in interval-valued L-fuzzy set theory [J].
Deschrijver, Glad .
FUZZY SETS AND SYSTEMS, 2008, 159 (13) :1597-1618
[8]   Linguistic Computational Model Based on 2-Tuples and Intervals [J].
Dong, Yucheng ;
Zhang, Guiqing ;
Hong, Wei-Chiang ;
Yu, Shui .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) :1006-1018
[9]   FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :143-202
[10]  
Gottwald Siegfried., 2001, STUDIES LOGIC COMPUT, V9