Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency

被引:214
|
作者
Eibinger, Manuel [1 ]
Ganner, Thomas [2 ]
Bubner, Patricia [1 ]
Rosker, Stephanie [2 ]
Kracher, Daniel [4 ]
Haltrich, Dietmar [4 ]
Ludwig, Roland [4 ]
Plank, Harald [2 ,3 ]
Nidetzky, Bernd [1 ,5 ]
机构
[1] Graz Univ Technol, Inst Biotechnol & Biochem Engn, A-8010 Graz, Austria
[2] Inst Electron Microscopy & Nanoanal, A-8010 Graz, Austria
[3] Graz Ctr Electron Microscopy, A-8010 Graz, Austria
[4] BOKU Univ Nat Resources & Life Sci, Dept Food Sci & Technol, A-1190 Vienna, Austria
[5] Austrian Ctr Ind Biotechnol, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
ATOMIC-FORCE MICROSCOPY; IN-SITU-OBSERVATION; ENZYMATIC-HYDROLYSIS; CELLOBIOSE DEHYDROGENASE; LIGNOCELLULOSIC BIOMASS; STRUCTURAL-DYNAMICS; NEUROSPORA-CRASSA; NATIVE CELLULOSE; PICHIA-PASTORIS; ENZYMES;
D O I
10.1074/jbc.M114.602227
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization.
引用
收藏
页码:35929 / 35938
页数:10
相关论文
共 50 条
  • [21] A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides
    Isaksen, Trine
    Westereng, Bjorge
    Aachmann, Finn L.
    Agger, Jane W.
    Kracher, Daniel
    Kittl, Roman
    Ludwig, Roland
    Haltrich, Dietmar
    Eijsink, Vincent G. H.
    Horn, Svein J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (05) : 2632 - 2642
  • [22] Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity
    Jensen, Marianne Slang
    Klinkenberg, Geir
    Bissaro, Bastien
    Chylenski, Piotr
    Vaaje-Kolstad, Gustav
    Kvitvang, Hans Fredrik
    Naerdal, Guro Kruge
    Sletta, Havard
    Forsberg, Zarah
    Eijsink, Vincent G. H.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (50) : 19349 - 19364
  • [23] The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation
    Courtade, Gaston
    Forsberg, Zarah
    Heggset, Ellinor B.
    Eijsink, Vincent G. H.
    Aachmann, Finn L.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (34) : 13006 - 13015
  • [24] Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation
    Mathieu, Yann
    Raji, Olanrewaju
    Bellemare, Annie
    Di Falco, Marcos
    Nguyen, Thi Truc Minh
    Viborg, Alexander Holm
    Tsang, Adrian
    Master, Emma
    Brumer, Harry
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [25] Novel Two-Step Process in Cellulose Depolymerization: Hematite-Mediated Photocatalysis by Lytic Polysaccharide Monooxygenase and Fenton Reaction
    Wang, Damao
    Kao, Mu-Rong
    Li, Jing
    Sun, Peicheng
    Meng, Qijun
    Vyas, Anisha
    Liang, Pi-Hui
    Wang, Yane-Shih
    Hsieh, Yves S. Y.
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (32) : 9941 - 9947
  • [26] Action of AA9 lytic polysaccharide monooxygenase enzymes on different cellulose allomorphs
    Grellier, Margaux
    Moreau, Celine
    Beaugrand, Johnny
    Grisel, Sacha
    Berrin, Jean-Guy
    Cathala, Bernard
    Villares, Ana
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 275
  • [27] Structural and functional study of a novel lytic polysaccharide monooxygenase cPMO2 from compost sample in the oxidative degradation of cellulose
    Ma, Lei
    Li, Guangqi
    Xu, Hongming
    Liu, Zhiying
    Wan, Qun
    Liu, Dongyang
    Shen, Qirong
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [28] A lytic polysaccharide monooxygenase from Myceliophthora thermophila C1 and its characterization in cleavage of glycosidic chain of cellulose
    Guo, Xiao
    Sang, Jingcheng
    Chai, Chengcheng
    An, Yajing
    Wei, Zhifeng
    Zhang, Huitu
    Ma, Lijuan
    Dai, Yujie
    Lu, Fuping
    Liu, Fufeng
    BIOCHEMICAL ENGINEERING JOURNAL, 2020, 162
  • [29] Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation
    Arfi, Yonathan
    Shamshoum, Melina
    Rogachev, Ilana
    Peleg, Yoav
    Bayer, Edward A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (25) : 9109 - 9114
  • [30] In situ H2O2 Generation by Choline Oxidase and Its Application in Amino Polysaccharide Degradation by Coupling to Lytic Polysaccharide Monooxygenase
    Hoang, Nam-Hai
    Golten, Ole
    Forsberg, Zarah
    Eijsink, Vincent G. H.
    Richter, Michael
    CHEMBIOCHEM, 2023, 24 (14)