Clustering synthetic aperture radar (SAR) imagery using an automatic approach

被引:5
|
作者
Li, Junhua [1 ]
Chen, Wenjun [1 ]
机构
[1] Canada Ctr Remote Sensing, Nat Resources Canada, Ottawa, ON K1A OY7, Canada
关键词
D O I
10.5589/m07-032
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Synthetic aperture radar (SAR) imagery has been shown to be useful for land surface applications. Similar to optical imagery, unsupervised or supervised algorithms can also be used to classify SAR data. Supervised classification methods require a priori information, which is usually not available, especially over a large area. Similarly, existing unsupervised classification methods based on clustering algorithms (e.g., K-means and ISODATA) require control input parameters, such as the number of clusters, which are difficult to obtain over a large area. In this paper, we present a new automated clustering method for SAR imagery that does not require input of control parameters. The main advantage of this method over other methods is the capability to automatically determine the number of statistically separable clusters in a SAR image. The performance of the method is assessed over two test sites.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 50 条
  • [1] Nearshore Bathymetry Estimation Using Synthetic Aperture Radar (SAR) Imagery
    Ma, Yue
    Yue, Bing
    Chenier, Rene
    Omari, Khalid
    Henschel, Michael
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (06) : 790 - 801
  • [2] Automatic registration of Synthetic Aperture Radar (SAR) images
    Luong, HQ
    Gautama, S
    Philips, W
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3864 - 3867
  • [3] Automatic target recognition (ATR) performance on wavelet compressed synthetic aperture radar (SAR) imagery
    Hoffelder, M
    Tian, J
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY VII, 2000, 4053 : 685 - 695
  • [4] A ground truth tool for Synthetic Aperture Radar (SAR) imagery
    Pavlidis, I
    Perrin, D
    Papanikolopoulos, NP
    Au, W
    Sawtelle, S
    IEEE WORKSHOP ON COMPUTER VISION BEYOND THE VISIBLE SPECTRUM: METHODS AND APPLICATIONS (CVBVS'99) - PROCEEDINGS, 1999, : 82 - 87
  • [5] Automatic classification of targets in synthetic aperture radar imagery using topographic features
    Meth, R
    Chellappa, R
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY III, 1996, 2757 : 186 - 193
  • [6] Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey
    Kechagias-Stamatis, Odysseas
    Aouf, Nabil
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2021, 36 (03) : 56 - 81
  • [7] Research on ship automatic detection method using polarimetric synthetic aperture radar imagery
    Wei J.
    Wei, Jujie (weijujie0417@163.com), 1600, SinoMaps Press (46): : 131
  • [8] Multi-Objective Fuzzy Clustering for Synthetic Aperture Radar Imagery
    Gao, Bo
    Wang, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (11) : 2341 - 2345
  • [9] DEVELOPMENT OF AN ALGORITHM FOR AUTOMATIC DETECTION OF OIL SLICKS FROM SYNTHETIC APERTURE RADAR (SAR) IMAGERY IN THE GULF OF GUINEA
    Sefah-Twerefour, Amadi Afua
    Wiafe, George
    Agyekum, Kwame Adu
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2105 - 2108
  • [10] Flood Mapping of Synthetic Aperture Radar (SAR) Imagery Based on Semi-Automatic Thresholding and Change Detection
    Lang, Fengkai
    Zhu, Yanyin
    Zhao, Jinqi
    Hu, Xinru
    Shi, Hongtao
    Zheng, Nanshan
    Zha, Jianfeng
    REMOTE SENSING, 2024, 16 (15)