Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm

被引:261
作者
Xiong, Guojiang [1 ]
Zhang, Jing [1 ]
Shi, Dongyuan [2 ]
He, Yu [1 ]
机构
[1] Guizhou Univ, Guizhou Key Lab Intelligent Technol Power Syst, Coll Elect Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Hubei, Peoples R China
关键词
Solar photovoltaic; Parameter extraction; Whale optimization algorithm; Optimization problem; ADAPTIVE DIFFERENTIAL EVOLUTION; FLOWER POLLINATION ALGORITHM; PARTICLE SWARM OPTIMIZATION; LEARNING-BASED OPTIMIZATION; BACTERIAL FORAGING ALGORITHM; ARTIFICIAL BEE COLONY; WATER CYCLE ALGORITHM; MAXIMUM POWER POINT; CELL MODELS; PV CELLS;
D O I
10.1016/j.enconman.2018.08.053
中图分类号
O414.1 [热力学];
学科分类号
摘要
Parameter extraction of solar photovoltaic (PV) models is a typical complex nonlinear multivariable strongly coupled optimization problem. In this paper, an improved whale optimization algorithm (WOA), referred to as IWOA, is proposed to accurately extract the parameters of different PV models. The original WOA has good local exploitation ability, but it is likely to stagnate and suffer from premature convergence when dealing with complex multimodal problems. To conquer this concerning shortcoming, IWOA develops two prey searching strategies to effectively balance the local exploitation and global exploration, and thereby enhance the performance of WOA. Three benchmark test PV models including single diode, double diode and PV module models, and two practical PV power station models with more modules in the Guizhou Power Grid of China are employed to verify the performance of IWOA. The experimental and comparison results comprehensively demonstrate that IWOA is significantly better than the original WOA and three advanced variants of WOA, and is also highly competitive with the reported results of some recently-developed parameter extraction methods.
引用
收藏
页码:388 / 405
页数:18
相关论文
共 72 条
  • [1] Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
    Abd El Aziz, Mohamed
    Ewees, Ahmed A.
    Hassanien, Aboul Ella
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 83 : 242 - 256
  • [2] Flower Pollination Algorithm based solar PV parameter estimation
    Alam, D. F.
    Yousri, D. A.
    Eteiba, M. B.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 410 - 422
  • [3] Optimal extraction of solar cell parameters using pattern search
    AlHajri, M. F.
    El-Naggar, K. M.
    AlRashidi, M. R.
    Al-Othman, A. K.
    [J]. RENEWABLE ENERGY, 2012, 44 : 238 - 245
  • [4] Parameter extraction of photovoltaic generating units using multi-verse optimizer
    Ali, E. E.
    El-Hameed, M. A.
    El-Fergany, A. A.
    El-Arini, M. M.
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 17 : 68 - 76
  • [5] Optimizing connection weights in neural networks using the whale optimization algorithm
    Aljarah, Ibrahim
    Faris, Hossam
    Mirjalili, Seyedali
    [J]. SOFT COMPUTING, 2018, 22 (01) : 1 - 15
  • [6] Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
    Allam, Dalia
    Yousri, D. A.
    Eteiba, M. B.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 123 : 535 - 548
  • [7] Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2013, 90 : 123 - 133
  • [8] Artificial bee swarm optimization algorithm for parameters identification of solar cell models
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. APPLIED ENERGY, 2013, 102 : 943 - 949
  • [9] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [10] Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data
    Awadallah, Mohamed A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 312 - 320