Spectral instability of the semiclassical Zakharov-Shabat eigenvalue problem

被引:14
作者
Bronski, JC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
spectral instability; Zakharov-Shabat eigenvalue; NLS equation;
D O I
10.1016/S0167-2789(01)00167-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some brief numerical results indicating that in the semiclassical limit the Zakharov-Shabat eigenvalue problem exhibits severe spectral instability, and that small changes in the potential can result in large changes in the spectrum. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 18 条
[1]  
ASLANYAN A, SPECTRAL INSTABILITY
[2]   Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation [J].
Bronski, JC ;
Kutz, JN .
PHYSICS LETTERS A, 1999, 254 (06) :325-336
[3]   Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem [J].
Bronski, JC .
PHYSICA D, 1996, 97 (04) :376-397
[4]  
BRONSKI JC, 1994, NATO ADV SCI I SER B, V320
[5]   Semi-classical states for non-self-adjoint Schrodinger operators [J].
Davies, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :35-41
[6]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS [J].
DEIFT, P ;
ZHOU, X .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (01) :119-123
[7]  
Deift P, 1997, INT MATH RES NOTICES, V1997, P285
[8]  
DEIFT P, UNPUB
[9]  
ERCOLANI NM, 1993, ZERO DISPERSION LIMI
[10]  
FOREST MG, 1986, OSCILLATION THEORY C, V2