Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein-Gordon Equation

被引:27
作者
Abdeljabbar, Alrazi [1 ]
Roshid, Harun-Or [2 ]
Aldurayhim, Abdullah [3 ]
机构
[1] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[2] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh
[3] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
关键词
the Klein-Gordon; the generalized Kudryashov scheme; the extended Sinh Gordon expansion scheme; solid-state physics; rogue wave; bright bell; dark bell profile; GENERALIZED KUDRYASHOV METHOD;
D O I
10.3390/sym14061223
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article reflects on the Klein-Gordon model, which frequently arises in the fields of solid-state physics and quantum field theories. We analytically delve into solitons and composite rogue-type wave propagation solutions of the model via the generalized Kudryashov and the extended Sinh Gordon expansion approaches. We obtain a class of analytically exact solutions in the forms of exponential and hyperbolic functions involving some arbitrary parameters with the help of Maple, which included comparing symmetric and non-symmetric solutions with other methods. After analyzing the dynamical behaviors, we caught distinct conditions on the accessible parameters of the solutions for the model. By applying conditions to the existing parameters, we obtained various types of rogue waves, bright and dark bells, combing bright-dark, combined dark-bright bells, kink and anti-kink solitons, and multi-soliton solutions. The nature of the solitons is geometrically explained for particular choices of the arbitrary parameters. It is indicated that the nonlinear rogue-type wave packets are restricted in two dimensions that characterized the rogue-type wave envelopes.
引用
收藏
页数:13
相关论文
共 45 条
[1]  
Abdeljabbar A., 2021, PARTIAL DIFFER EQU A, V3, P100022, DOI 10.1016/j.padiff.2021.100022
[2]  
Abdeljabbar A, 2016, Applied Mathematical Sciences, V10, P2351, DOI [10.12988/ams.2016.65165, DOI 10.12988/AMS.2016.65165]
[3]  
Agom EU, 2018, Journal of Mathematical and Computational Science, V8, P484, DOI [10.28919/jmcs/3749, 10.28919/10.28919/jmcs/3749]
[4]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[5]   New results for deformed defects [J].
Almeida, CA ;
Bazeia, D ;
Losano, L ;
Malbouisson, JMC .
PHYSICAL REVIEW D, 2004, 69 (06) :4
[6]   Application of the generalized Kudryashov method to the Eckhaus equation [J].
Arnous, Ahmed H. ;
Mirzazadeh, Mohammad .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (05) :577-586
[7]  
Atock A., 2014, OPEN J MAR SCI, V4, P246, DOI [DOI 10.4236/OJMS.2014.44023, DOI 10.4236/ojms.2014.44023]
[8]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[9]   Deformed defects [J].
Bazeia, D ;
Losano, L ;
Malbouisson, JMC .
PHYSICAL REVIEW D, 2002, 66 (10)
[10]   Compact lumps [J].
Bazeia, D. ;
Marques, M. A. ;
Menezes, R. .
EPL, 2015, 111 (06)