Time-dependent measurable Hamilton-Jacobi equations

被引:17
作者
Camilli, F [1 ]
Siconolfi, A
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, Sez Matemat Ingn, Loc Monteluco Di Roio, I-67100 Laquila, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
comparison theorem; measurable Hamilton-Jacobi equations; sup-convolution; viscosity solution;
D O I
10.1081/PDE-200059292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation u(t) + H(x, Du) = 0 in R-N x (0, + infinity) with Hamiltonian H(x, p) measurable with respect to the state variable, and convex and coercive in p. We introduce a notion of solution based on viscosity test functions, appropriate averages in measure-theoretic sense of the Hamiltonian, and t-partial-sup-convolutions. We get existence results, comparison principles, and stability properties. We show that our solutions are uniform limits of viscosity solutions (in the sense of Crandall and Lions) of approximated continuous equations.
引用
收藏
页码:813 / 847
页数:35
相关论文
共 21 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]  
Barles G, 2003, INTERFACE FREE BOUND, V5, P83
[3]   Monge solutions for discontinuous Hamiltonians [J].
Briani, A ;
Davini, A .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (02) :229-251
[4]  
Caffarelli L, 1996, COMMUN PUR APPL MATH, V49, P365
[5]   Discontinuous solutions of a Hamilton-Jacobi equation with infinite speed of propagation [J].
Camilli, F ;
Siconolfi, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) :1420-1445
[6]  
CAMILLI F, 2003, EFFECTIVE HAMILTON H
[7]  
CAMILLI F, 2002, NONLINEAR ANAL, V57, P265
[8]  
Camilli F., 2003, ADV DIFFERENTIAL EQU, V8, P733
[9]  
Cannarsa P., PROGR NONLINEAR DIFF, V58
[10]  
Concordel MC, 1996, INDIANA U MATH J, V45, P1095