Generalized Bezier Curves Based on Bernstein-Stancu-Chlodowsky Type Operators

被引:1
作者
Khatri, Kejal [1 ]
Mishra, Vishnu Narayan [2 ,3 ]
机构
[1] Govt Coll Simalwara, Dungarpur 314403, Rajasthan, India
[2] Indira Gandhi Natl Tribal Univ, Dept Math, Anuppur 484887, Madhya Pradesh, India
[3] L-1627 Awadh Puri Colony Beniganj, Faizabad 224001, Uttar Pradesh, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2022年 / 40卷
关键词
Bernstein-Stancu-Chlodowsky type operators; Bezier curves; Degree elevation; de Casteljau algorithm; Shape parameters; LUPAS Q-ANALOG; Q)-ANALOG; (P; APPROXIMATION;
D O I
10.5269/bspm.52003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky Bezier curves. We study the nature of degree elevation and degree reduction for Bezier Bernstein-Stancu-Chlodowsky functions with shifted knots for t is an element of [gamma/n+delta, n+gamma/n+delta]. We also present a de Casteljau algorithm to compute Bernstein Bezier curves with shifted knots. The new curves have some properties similar to Bezier curves. Furthermore, some fundamental properties for Bernstein Bezier curves are discussed. Our generalizations show more flexibility in taking the value of gamma and delta and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
Aral A., 2012, NOTE BERNSTEIN STANC
[2]  
Bernstein S., 1912, Commun. Kharkov Math. Soc., V13, P1
[3]  
Bezier P., 1972, NUMERICAL CONTROL MA
[4]  
Chlodowsky I., 1937, Compos. Math., V4, P380
[5]  
DE CASTELJAU P., 1959, OUTILLAGES METHODES
[6]   TENSOR PRODUCT q-BERNSTEIN POLYNOMIALS [J].
Disibueyuek, Cetin ;
Oruc, Halil .
BIT NUMERICAL MATHEMATICS, 2008, 48 (04) :689-700
[7]  
Disibuyuk Cetin, 2009, LECT NOTES COMPUTER
[8]   ALGORITHMS FOR POLYNOMIALS IN BERNSTEIN FORM. [J].
Farouki, R.T. ;
Rajan, V.T. .
Computer Aided Geometric Design, 1988, 5 (01) :1-26
[9]   Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables [J].
Gadjiev, A. D. ;
Ghorbanalizadeh, A. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) :890-901
[10]  
Gairola AR, 2018, IRAN J SCI TECHNOL A, V42, P1409, DOI 10.1007/s40995-017-0227-8