Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans

被引:31
作者
Boers, T. G. W. [1 ]
Hu, Y. [2 ]
Gibson, E. [2 ]
Barratt, D. C. [2 ]
Bonmati, E. [2 ]
Krdzalic, J. [3 ]
van der Heijden, F. [1 ]
Hermans, J. J. [3 ]
Huisman, H. J. [4 ]
机构
[1] Univ Twente, Fac Sci & Technol, Enschede, Netherlands
[2] UCL, Dept Med Phys & Biomed Engn, London, England
[3] Radboud UMC, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[4] Radboud UMC, Diagnost Image Anal Grp, Nijmegen, Netherlands
关键词
deep learning; pancreatic cancer; interactive segmentation; U-net; IMAGE QUALITY;
D O I
10.1088/1361-6560/ab6f99
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The increasing incidence of pancreatic cancer will make it the second deadliest cancer in 2030. Imaging based early diagnosis and image guided treatment are emerging potential solutions. Artificial intelligence (AI) can help provide and improve widespread diagnostic expertise and accurate interventional image interpretation. Accurate segmentation of the pancreas is essential to create annotated data sets to train AI, and for computer assisted interventional guidance. Automated deep learning segmentation performance in pancreas computed tomography (CT) imaging is low due to poor grey value contrast and complex anatomy. A good solution seemed a recent interactive deep learning segmentation framework for brain CT that helped strongly improve initial automated segmentation with minimal user input. This method yielded no satisfactory results for pancreas CT, possibly due to a sub-optimal neural network architecture. We hypothesize that a state-of-the-art U-net neural network architecture is better because it can produce a better initial segmentation and is likely to be extended to work in a similar interactive approach. We implemented the existing interactive method, iFCN, and developed an interactive version of U-net method we call iUnet. The iUnet is fully trained to produce the best possible initial segmentation. In interactive mode it is additionally trained on a partial set of layers on user generated scribbles. We compare initial segmentation performance of iFCN and iUnet on a 100CT dataset using dice similarity coefficient analysis. Secondly, we assessed the performance gain in interactive use with three observers on segmentation quality and time. Average automated baseline performance was 78% (iUnet) versus 72% (FCN). Manual and semi-automatic segmentation performance was: 87% in 15 min. for manual, and 86% in 8 min. for iUNet. We conclude that iUnet provides a better baseline than iFCN and can reach expert manual performance significantly faster than manual segmentation in case of pancreas CT. Our novel iUnet architecture is modality and organ agnostic and can be a potential novel solution for semi-automatic medical imaging segmentation in general.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [22] Pancreas Segmentation in Abdominal CT Images with U-Net Model
    Kurnaz, Ender
    Ceylan, Rahime
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [23] Enhanced U-Net Architecture for Lung Segmentation on Computed Tomography and X-Ray Images
    Saimassay, Gulnara
    Begenov, Mels
    Sadyk, Ualikhan
    Baimukashev, Rashid
    Maratov, Askhat
    Omarov, Batyrkhan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 921 - 930
  • [24] R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
    Kadia, Dhaval D.
    Alom, Md Zahangir
    Burada, Ranga
    Nguyen, Tam, V
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 88835 - 88843
  • [26] Kidney segmentation using 3D U-Net localized with Expectation Maximization
    Bazgir, Omid
    Barck, Kai
    Carano, Richard A. D.
    Weimer, Robby M.
    Xie, Luke
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 22 - 25
  • [27] Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
    Nodirov, Jakhongir
    Abdusalomov, Akmalbek Bobomirzaevich
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (17)
  • [28] U-Net based automatic carotid plaque segmentation from 3D ultrasound images
    Zhou, Ran
    Ma, Wei
    Fenster, Aaron
    Ding, Mingyue
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [29] DEU-Net: Dual Encoder U-Net for 3D Medical Image Segmentation
    Zhou, Yuxiang
    Kang, Xin
    Ren, Fuji
    Nakagawa, Satoshi
    Shan, Xiao
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2735 - 2741
  • [30] BTIS-Net: Efficient 3D U-Net for Brain Tumor Image Segmentation
    Liu, Li
    Xia, Kaijian
    IEEE ACCESS, 2024, 12 : 133392 - 133405