Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations

被引:3
作者
Liu, Shenggui [1 ]
Lyu, Mindong [1 ]
Wang, Chao [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Mech & Civil Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
关键词
graphene foam materials; microstructure; bi-modal sheet thickness; stress-strain curve; coarse-grained molecular dynamics; SPONGY GRAPHENE; FRACTURE MODE; FIBERS; AEROGELS; ULTRALIGHT; FRAMEWORKS; NETWORKS; BEHAVIOR;
D O I
10.3390/ma14195622
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene foams (GrFs) have been widely used as structural and/or functional materials in many practical applications. They are always assembled by thin and thick graphene sheets with multiple thicknesses; however, the effect of this basic structural feature has been poorly understood by existing theoretical models. Here, we propose a coarse-grained bi-modal GrF model composed of a mixture of 1-layer flexible and 8-layer stiff sheets to study the mechanical properties and deformation mechanisms based on the mesoscopic model of graphene sheets (Model. Simul. Mater. Sci. Eng. 2011, 19, 54003). It is found that the modulus increases almost linearly with an increased proportion of 8-layer sheets, which is well explained by the mixture rule; the strength decreases first and reaches the minimum value at a critical proportion of stiff sheets ~30%, which is well explained by the analysis of structural connectivity and deformation energy of bi-modal GrFs. Furthermore, high-stress regions are mainly dispersed in thick sheets, while large-strain areas mainly locate in thin ones. Both of them have a highly uneven distribution in GrFs due to the intrinsic heterogeneity in both structures and the mechanical properties of sheets. Moreover, the elastic recovery ability of GrFs can be enhanced by adding more thick sheets. These results should be helpful for us to understand and further guide the design of advanced GrF-based materials.</p>
引用
收藏
页数:14
相关论文
共 56 条
  • [1] From flat graphene to bulk carbon nanostructures
    Baimova, Julia A.
    Rysaeva, Leysan Kh
    Liu, Bo
    Dmitriev, Sergey V.
    Zhou, Kun
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (07): : 1502 - 1507
  • [2] Graphene added multilayer ceramic sandwich (GMCS) composites: Structure, preparation and properties
    Balazsi, K.
    Furko, M.
    Liao, Z.
    Fogarassy, Zs
    Medved, D.
    Zschech, E.
    Dusza, J.
    Balazsi, C.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (14) : 4792 - 4798
  • [3] Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents
    Bi, Hengchang
    Xie, Xiao
    Yin, Kuibo
    Zhou, Yilong
    Wan, Shu
    He, Longbing
    Xu, Feng
    Banhart, Florian
    Sun, Litao
    Ruoff, Rodney S.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) : 4421 - 4425
  • [4] A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure
    Bi, Hui
    Chen, I-Wei
    Lin, Tianquan
    Huang, Fuqiang
    [J]. ADVANCED MATERIALS, 2015, 27 (39) : 5943 - 5949
  • [5] Callister WD., 2000, Materials science and engineering: an introduction, V5th ed.
  • [6] Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation
    Chae, Seung Jin
    Guenes, Fethullah
    Kim, Ki Kang
    Kim, Eun Sung
    Han, Gang Hee
    Kim, Soo Min
    Shin, Hyeon-Jin
    Yoon, Seon-Mi
    Choi, Jae-Young
    Park, Min Ho
    Yang, Cheol Woong
    Pribat, Didier
    Lee, Young Hee
    [J]. ADVANCED MATERIALS, 2009, 21 (22) : 2328 - +
  • [7] Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance
    Chen, Shuangqiang
    Bao, Peite
    Huang, Xiaodan
    Sun, Bing
    Wang, Guoxiu
    [J]. NANO RESEARCH, 2014, 7 (01) : 85 - 94
  • [8] Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/nmat3001, 10.1038/NMAT3001]
  • [9] Twisted and coiled ultralong multilayer graphene ribbons
    Cranford, Steven
    Buehler, Markus J.
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2011, 19 (05)
  • [10] Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting
    Gao, Weiwei
    Zhao, Nifang
    Yao, Weiquan
    Xu, Zhen
    Bai, Hao
    Gao, Chao
    [J]. RSC ADVANCES, 2017, 7 (53): : 33600 - 33605