Facile synthesis of CuFe2O4-Fe2O3 composite for high-performance supercapacitor electrode applications

被引:31
作者
Khan, Rashid [1 ]
Habib, Muhammad [1 ]
Gondal, Mohammed A. [2 ,3 ]
Khalil, Adnan [1 ]
Rehman, Zia Ur [1 ]
Muhammad, Zahir [1 ]
Haleem, Yasir A. [1 ]
Wang, Changda [1 ]
Wu, Chuan Qiang [1 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[2] King Fahd Univ Petr & Minerals, Phys Dept, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Ctr Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia
来源
MATERIALS RESEARCH EXPRESS | 2017年 / 4卷 / 10期
关键词
supercapacitor; co-precipitation method; CuFe2O4-Fe2O3; electrochemistry; energy-storage; STATE ASYMMETRIC SUPERCAPACITORS; ELECTROCHEMICAL CAPACITORS; HYDROTHERMAL SYNTHESIS; CHARGE STORAGE; GRAPHENE; OXIDE; FABRICATION; NANOWIRES; NANOTUBES; BATTERIES;
D O I
10.1088/2053-1591/aa8dc4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the synthesis of CuFe2O4-Fe2O3 composite material for efficient and highly stable supercapacitor electrode by using eco-friendly low-temperature co-precipitation method. The CuFe2O4-Fe2O3 composite demonstrated the highest specific capacitance of 638.24 F g(-1) and excellent stability up to 2000 charge/discharge cycles. The achieved capacitance value is 16 times higher than that of pure CuFe2O4. The results revealed the extraordinary performance of CuFe2O4-Fe2O3 composite as supercapacitor electrode with excellent retention in comparison to CuFe2O4. The enhanced electrochemical activity of CuFe2O4-Fe2O3 composite is attributed to the synergistic effect which is responsible for redox coupling between Cu2+ and Fe3+ that has never been achieved by single component before.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Synergistic effect of La2o3 -Nio nanocomposite based electrode for electrochemical high-performance asymmetric supercapacitor applications [J].
Riyas, Z. Mohamed ;
Priya, C. ;
Premila, R. ;
Maheshwaran, G. ;
Sudhahar, S. ;
Prabhu, M. Ramesh .
JOURNAL OF ENERGY STORAGE, 2022, 53
[22]   Facile synthesis of pseudocapacitive Mn3O4 nanoparticles for high-performance supercapacitor [J].
Li, Bin ;
Zhang, Xihua ;
Dou, Jinhe ;
Hu, Cheng .
CERAMICS INTERNATIONAL, 2019, 45 (13) :16297-16304
[23]   CTAB-assisted synthesis of porous cuboid NiCo2O4 powders for high-performance supercapacitor [J].
Ghaemi, S. P. ;
Masoudpanah, S. M. ;
Alamolhoda, S. .
JOURNAL OF ENERGY STORAGE, 2023, 67
[24]   Facile synthesis of ternary NiFe2O4-Co3O4@G nanocomposite for supercapacitor [J].
Kumar, Rajiv ;
Lakra, Rajan ;
Singh, Mamraj ;
Soam, Ankur .
ENGINEERING RESEARCH EXPRESS, 2024, 6 (04)
[25]   Facile synthesis of NiCo2O4/rGO microspheres with high-performance for supercapacitor [J].
Meng, Fanbin ;
Zhao, Lican ;
Zhang, Yujie ;
Zhai, Jiao ;
Li, Yujin ;
Zhang, Wei .
CERAMICS INTERNATIONAL, 2019, 45 (17) :23701-23706
[26]   Nanostructured MnCo2O4as a high-performance electrode for supercapacitor application [J].
Haripriya, M. ;
Ashok, Anuradha M. ;
Hussain, Shamima ;
Sivasubramanian, R. .
IONICS, 2021, 27 (01) :325-337
[27]   One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor [J].
Gao, Yang ;
Wu, Dongling ;
Wang, Tao ;
Jia, Dianzeng ;
Xia, Wei ;
Lv, Yan ;
Cao, Yali ;
Tan, Yangyang ;
Liu, Penggao .
ELECTROCHIMICA ACTA, 2016, 191 :275-283
[28]   Facile construction of hexagonal Co3O4 as the electrode for high-performance supercapacitor [J].
Wu, Fangze ;
Cui, Fang ;
Ma, Qinghai ;
Zhang, Jiajia ;
Qi, Xin ;
Cui, Tieyu .
MATERIALS LETTERS, 2022, 324
[29]   Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor [J].
Chen, Jun ;
Song, Juan ;
Feng, Xiaomiao .
POLYMER BULLETIN, 2017, 74 (01) :27-37
[30]   Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material [J].
Gupta, Anjli ;
Sardana, Silki ;
Dalal, Jasvir ;
Lather, Sushma ;
Maan, Anup S. ;
Tripathi, Rahul ;
Punia, Rajesh ;
Singh, Kuldeep ;
Ohlan, Anil .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (07) :6434-6446