The circular electron-positron collider beam energy measurement with Compton scattering and beam tracking method

被引:7
|
作者
Tang, Guangyi [1 ]
Chen, Shanhong [1 ]
Chen, Yuan [1 ]
Duan, Zhe [1 ]
Ruan, Manqi [1 ]
An, Guangpeng [1 ,2 ]
Huang, Yongsheng [1 ,2 ]
Lou, Xinchou [1 ,2 ]
Zhang, Jianyong [1 ,2 ]
Lan, Xiaofei [3 ]
Zhang, Chunlei [4 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China
[3] China West Normal Univ, Phys & Space Sci Coll, Nanchong 637009, Peoples R China
[4] Beijing Normal Univ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2020年 / 91卷 / 03期
基金
中国国家自然科学基金;
关键词
OF-MASS ENERGIES;
D O I
10.1063/1.5132975
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The beam energy of the circular electron-positron collider should be measured precisely to the order of 1 MeV, in order to decrease the uncertainty of the Higgs/W/Z bosons' mass measurement. For this purpose, a lepton bunch is extracted from the collider and collides with an Yttrium-Aluminum-Garnet laser pulse. After the inverse Compton scattering, the main beam and the scattered beam pass through an analytical magnetic field and are deflected to different angles. At the end of the drift beam pipes, the deflecting distances are detected with the spatial resolution of several microns. The systematic uncertainties caused by the detector arrangement, the magnetic field, the angle between the detector plane and the incident beam, and the synchrotron radiation are discussed in detail. The simulations of the statistical errors are given with a toy Monte Carlo sample. With some proper corrections, the beam energy uncertainty of the Higgs mode is around 2 MeV. Our method is applicable to different operating modes of the collider.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] The beam energy feedback system for Beijing electron positron collider II linac
    Wang, S.
    Iqbal, M.
    Chi, Y.
    Liu, R.
    Huang, X.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (03):
  • [42] Multi-GeV electron-positron beam generation from laser-electron scattering
    Marija Vranic
    Ondrej Klimo
    Georg Korn
    Stefan Weber
    Scientific Reports, 8
  • [43] Multi-GeV electron-positron beam generation from laser-electron scattering
    Vranic, Marija
    Klimo, Ondrej
    Korn, Georg
    Weber, Stefan
    SCIENTIFIC REPORTS, 2018, 8
  • [44] HIGH-ENERGY ELECTRON-POSITRON SCATTERING
    VIGIER, JP
    WATAGHIN, V
    NUOVO CIMENTO, 1965, 36 (04): : 1380 - +
  • [45] Timelike virtual compton scattering from electron-positron radiative annihilation
    Afanasev, Andrei
    Brodsky, Stanley J.
    Carlson, Carl E.
    Mukherjee, Asmita
    PHYSICAL REVIEW D, 2010, 81 (03):
  • [46] EFFECTS OF BEAM-BEAM FORCES IN LARGE ELECTRON-POSITRON STORAGE RINGS
    REES, GH
    TONER, WT
    TROTMAN, JV
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (02): : 193 - 193
  • [47] Quantum theory of laser-beam Compton interaction and stimulated electron-positron annihilation in a strong field
    Smetanin, IV
    Nakajima, K
    QUANTUM ASPECTS OF BEAM PHYSICS, 2004, : 195 - 203
  • [48] Quantum effects in laser-beam Compton interaction and stimulated electron-positron annihilation in a strong field
    Smetanin, IV
    Nakajima, K
    LASER AND PARTICLE BEAMS, 2004, 22 (04) : 479 - 484
  • [49] Beam dump experiment at future electron-positron colliders
    Kanemura, Shinya
    Moroi, Takeo
    Tanabe, Tomohiko
    PHYSICS LETTERS B, 2015, 751 : 25 - 28
  • [50] The method of measuring electron beam parameters based on laser Compton scattering
    Wang, Zhenwei
    Xu, Hanghua
    Hao, Zirui
    Zhang, Yue
    Liu, Longxiang
    Fan, Gongtao
    Wang, Hongwei
    He Jishu/Nuclear Techniques, 2024, 47 (11):