Weak Signed Roman Domination in Digraphs

被引:2
|
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
来源
TAMKANG JOURNAL OF MATHEMATICS | 2021年 / 52卷 / 04期
关键词
Digraph; Signed Roman domination number; Weak signed Roman domination number;
D O I
10.5556/j.tkjm.52.2021.3523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a finite and simple digraph with vertex set V (D). A weak signed Roman dominating function (WSRDF) on a digraph D is a function f : V (D) -> {-1, 1, 2} satisfying the condition that n-ary sumation Sigma(x is an element of N-[v]) f (x) >= 1 for each v is an element of V (D), where N-[v] consists of v and all vertices of D from which arcs go into v. The weight of a WSRDF f is n-ary sumation Sigma(is an element of V(D)) f (v). The weak signed Roman domination number gamma(wsR)(D) of D is the minimum weight of a WSRDF on D. In this paper we initiate the study of the weak signed Roman domination number of digraphs, and we present different bounds on gamma(wsR)(D). In addition, we determine the weak signed Roman domination number of some classes of digraphs.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 49 条
  • [41] Roman domination in oriented trees
    Ouldrabah, Lyes
    Blidia, Mostafa
    Bouchou, Ahmed
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 95 - 103
  • [42] The signed Roman domatic number of a graph
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 40 : 105 - 112
  • [43] On signed domination number of Cartesian product of directed paths
    Wang, Haichao
    Kim, Hye Kyung
    Deng, Yunping
    UTILITAS MATHEMATICA, 2018, 109 : 45 - 61
  • [44] TWIN ROMAN DOMINATION NUMBER OF A DIGRAPH
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Samodivkin, V.
    Volkmann, L.
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 3 - 14
  • [45] The kth upper bases of primitive non-powerful signed digraphs
    Shao, Yanling
    Shen, Jian
    Gao, Yubin
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2682 - 2686
  • [46] The signed total Roman domatic number of a digraph
    Amjadi, J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (02)
  • [47] Private Out-Domination Number of Generalized de Bruijn Digraphs
    Marimuthu, G.
    Johnson, B.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 504 - 517
  • [48] The kth upper and lower bases of primitive nonpowerful minimally strong signed digraphs
    Shao, Yanling
    Shen, Jian
    Gao, Yubin
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (09): : 1093 - 1113
  • [49] Notes on weak-odd edge colorings of digraphs
    Hernandez-Cruz, Cesar
    Petrusevski, Mirko
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (02)