Degraded Image Semantic Segmentation With Dense-Gram Networks

被引:40
作者
Guo, Dazhou [1 ]
Pei, Yanting [2 ]
Zheng, Kang [1 ]
Yu, Hongkai [1 ,3 ]
Lu, Yuhang [1 ]
Wang, Song [1 ,4 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA
[2] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[3] Univ Texas Rio Grande Valley, Dept Comp Sci, Edinburg, TX 78539 USA
[4] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
关键词
Semantic segmentation; degraded images; QUALITY ASSESSMENT;
D O I
10.1109/TIP.2019.2936111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Degraded image semantic segmentation is of great importance in autonomous driving, highway navigation systems, and many other safety-related applications and it was not systematically studied before. In general, image degradations increase the difficulty of semantic segmentation, usually leading to decreased semantic segmentation accuracy. Therefore, performance on the underlying clean images can be treated as an upper bound of degraded image semantic segmentation. While the use of supervised deep learning has substantially improved the state of the art of semantic image segmentation, the gap between the feature distribution learned using the clean images and the feature distribution learned using the degraded images poses a major obstacle in improving the degraded image semantic segmentation performance. The conventional strategies for reducing the gap include: 1) Adding image-restoration based preprocessing modules; 2) Using both clean and the degraded images for training; 3) Fine-tuning the network pre-trained on the clean image. In this paper, we propose a novel Dense-Gram Network to more effectively reduce the gap than the conventional strategies and segment degraded images. Extensive experiments demonstrate that the proposed Dense-Gram Network yields state-of-the-art semantic segmentation performance on degraded images synthesized using PASCAL VOC 2012, SUNRGBD, CamVid, and CityScapes datasets.
引用
收藏
页码:782 / 795
页数:14
相关论文
共 49 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] A theory of learning from different domains
    Ben-David, Shai
    Blitzer, John
    Crammer, Koby
    Kulesza, Alex
    Pereira, Fernando
    Vaughan, Jennifer Wortman
    [J]. MACHINE LEARNING, 2010, 79 (1-2) : 151 - 175
  • [3] Integrating structured biological data by Kernel Maximum Mean Discrepancy
    Borgwardt, Karsten M.
    Gretton, Arthur
    Rasch, Malte J.
    Kriegel, Hans-Peter
    Schoelkopf, Bernhard
    Smola, Alex J.
    [J]. BIOINFORMATICS, 2006, 22 (14) : E49 - E57
  • [4] Segmentation and Recognition Using Structure from Motion Point Clouds
    Brostow, Gabriel J.
    Shotton, Jamie
    Fauqueur, Julien
    Cipolla, Roberto
    [J]. COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 44 - +
  • [5] DehazeNet: An End-to-End System for Single Image Haze Removal
    Cai, Bolun
    Xu, Xiangmin
    Jia, Kui
    Qing, Chunmei
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5187 - 5198
  • [6] EM procedures using mean field-like approximations for Markov model-based image segmentation
    Celeux, G
    Forbes, F
    Peyrard, N
    [J]. PATTERN RECOGNITION, 2003, 36 (01) : 131 - 144
  • [7] CaMap: Camera-based Map Manipulation on Mobile Devices
    Chen, Liang
    Chen, Dongyi
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [10] Image quality assessment based on a degradation model
    Damera-Venkata, N
    Kite, TD
    Geisler, WS
    Evans, BL
    Bovik, AC
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) : 636 - 650