Exactly solvable systems and the quantum Hamilton-Jacobi formalism

被引:12
作者
Rasinariu, C
Dykla, JJ
Gangopadhyaya, A [1 ]
Mallow, JV
机构
[1] Loyola Univ, Dept Phys, Chicago, IL 60611 USA
[2] Columbia Coll Chicago, Dept Sci & Math, Chicago, IL USA
关键词
D O I
10.1016/j.physleta.2005.03.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We connect quantum Hamilton-Jacobi theory with supersymmetric quantum mechanics (SUSYQM). We show that the shape invariance, which is an integrability condition of SUSYQM, translates into fractional linear relations among the quantum momentum functions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 14 条
[1]   Quantum Hamilton-Jacobi formalism and the bound state spectra [J].
Bhalla, RS ;
Kapoor, AK ;
Panigrahi, PK .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (12) :1187-1194
[2]   Solving simultaneously Dirac and Ricatti equations [J].
Casahorrán, J .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (04) :371-382
[3]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[4]   Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics [J].
Daoud, M ;
Kibler, M .
PHYSICS LETTERS A, 2004, 321 (03) :147-151
[5]  
Dresden Gregory, 2004, MATH MAG, V77, P211
[6]   SUPERSYMMETRY, SHAPE INVARIANCE, AND EXACTLY SOLVABLE POTENTIALS [J].
DUTT, R ;
KHARE, A ;
SUKHATME, UP .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (02) :163-168
[7]  
FISHER SD, 1986, COMPLEX VARIABLES
[8]  
Gangopadhyaya A, 2001, CHINESE J PHYS, V39, P101
[9]  
GANGOPADHYAYA A, 1997, P WORKSH SUP QUANT M
[10]   CLASSICAL AND QUANTUM ADIABATIC INVARIANTS [J].
GOZZI, E .
PHYSICS LETTERS B, 1985, 165 (4-6) :351-354