Probing Dopant Locations in Silicon Nanocrystals via High Energy X-ray Diffraction and Reverse Monte Carlo Simulation

被引:7
作者
Hunter, Katharine I. [1 ]
Bedford, Nicholas [2 ]
Schramke, Katelyn [1 ]
Kortshagen, Uwe R. [1 ]
机构
[1] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
[2] Univ New South Wales, Sch Chem Engn, Sydney, NSW, Australia
基金
美国国家科学基金会;
关键词
Nanocrystals; Silicon; Doping; High energy X-ray diffraction; Structure reconstruction; Reverse Monte Carlo simulation; PLASMONIC PROPERTIES; LATTICE CONTRACTION; SURFACE-STRUCTURE; PHOSPHORUS; BORON; PHOTOLUMINESCENCE; PARTICLES; NANOPARTICLES; SCATTERING; PROGRAM;
D O I
10.1021/acs.nanolett.9b03025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the locations of dopant atoms in ensembles of nanocrystals is crucial to controlling the dopants' function. While electron microscopy and atom probe tomography methods allow investigation of dopant location for small numbers of nanocrystals, assessing large ensembles has remained a challenge. Here, we are using high energy X-ray diffraction (HE-XRD) and structure reconstruction via reverse Monte Carlo simulation to characterize nanocrystal structure and dopant locations in ensembles of highly boron and phosphorus doped silicon nanocrystals (Si NCs). These plasma-synthesized NCs are a particularly intriguing test system for such an investigation, as elemental analysis suggests that Si NCs can be "hyperdoped" beyond the thermodynamic solubility limit in bulk silicon. Yet, free carrier densities derived from local surface plasmon resonances suggest that only a fraction of dopants are active. We demonstrate that the structural characteristics garnered from HE-XRD and structure reconstruction elucidate dopant location and doping efficacy for doped Si NCs from an atomic-scale perspective.
引用
收藏
页码:852 / 859
页数:8
相关论文
共 56 条
[1]   Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts [J].
Bedford, Nicholas M. ;
Ramezani-Dakhel, Hadi ;
Slocik, Joseph M. ;
Briggs, Beverly D. ;
Ren, Yang ;
Frenkel, Anatoly I. ;
Petkov, Valeri ;
Heinz, Hendrik ;
Naik, Rajesh R. ;
Knecht, Marc R. .
ACS NANO, 2015, 9 (05) :5082-5092
[2]  
Billinge S. J. L., 2004, CHEM COMMUN, P749
[3]   Reverse Monte Carlo modeling of amorphous silicon [J].
Biswas, P ;
Atta-Fynn, R ;
Drabold, DA .
PHYSICAL REVIEW B, 2004, 69 (19) :195207-1
[4]   Chemistry of Doped Colloidal Nanocrystals [J].
Buonsanti, Raffaella ;
Milliron, Delia J. .
CHEMISTRY OF MATERIALS, 2013, 25 (08) :1305-1317
[5]   Size limits on doping phosphorus into silicon nanocrystals [J].
Chan, T. L. ;
Tiago, Murilo L. ;
Kaxiras, Efthimios ;
Chelikowsky, James R. .
NANO LETTERS, 2008, 8 (02) :596-600
[6]  
Chen T, 2016, NAT MATER, V15, P299, DOI [10.1038/NMAT4486, 10.1038/nmat4486]
[7]   Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles [J].
Doan-Nguyen, Vicky V. T. ;
Kimber, Simon A. J. ;
Pontoni, Diego ;
Hickey, Danielle Reifsnyder ;
Diroll, Benjamin T. ;
Yang, Xiaohao ;
Miglierini, Marcel ;
Murray, Christopher B. ;
Billinge, Simon J. L. .
ACS NANO, 2014, 8 (06) :6163-6170
[8]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[9]   Photoluminescence from B-doped Si nanocrystals [J].
Fujii, M ;
Hayashi, S ;
Yamamoto, K .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (12) :7953-7957
[10]  
Gereben O, 2007, J OPTOELECTRON ADV M, V9, P3021