A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering

被引:20
作者
Cakmak, Soner [1 ,2 ,5 ]
Cakmak, Anil S. [2 ,3 ]
Kaplan, David L. [2 ]
Gumusderelioglu, Menemse [1 ,3 ,4 ]
机构
[1] Hacettepe Univ, Grad Sch Sci & Engn, Div Nanotechnol & Nanomed, TR-06800 Ankara, Turkey
[2] Tufts Univ, Dept Biomed Engn, 4 Colby St, Medford, MA 02155 USA
[3] Hacettepe Univ, Grad Sch Sci & Engn, Div Bioengn, TR-06800 Ankara, Turkey
[4] Hacettepe Univ, Dept Chem Engn, TR-06800 Ankara, Turkey
[5] Hacettepe Univ, Dept Environm Engn, TR-06800 Ankara, Turkey
关键词
co-culture; osteochondral model; peptide amphiphile; silk; trophic effect; MESENCHYMAL STEM-CELLS; MARROW STROMAL CELLS; HUMAN ARTICULAR CHONDROCYTES; IN-VITRO GENERATION; OSTEOGENIC DIFFERENTIATION; CHONDROGENIC DIFFERENTIATION; EXTRACELLULAR-MATRIX; MORPHOGENETIC SIGNALS; BIOMATERIAL SCAFFOLDS; CARTILAGE FORMATION;
D O I
10.1002/mabi.201600013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co-culture systems to address clinically applicable osteochondral constructs. Herein, a co-culture model is described based on a trilayered silk fibroin-peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co-cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT-PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF-beta family in the co-culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects.
引用
收藏
页码:1212 / 1226
页数:15
相关论文
共 68 条
[1]  
Altman G. A., 2010, BIOMATERIALS, V107, P3299
[2]   Multi-Layered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Co-Cultured Human Mesenchymal Stem Cells [J].
Amadori, Sofia ;
Torricelli, Paola ;
Panzavolta, Silvia ;
Parrilli, Annapaola ;
Fini, Milena ;
Bigi, Adriana .
MACROMOLECULAR BIOSCIENCE, 2015, 15 (11) :1535-1545
[3]   New directions in nanofibrous scaffolds for soft tissue engineering and regeneration [J].
Baker, Brendon M. ;
Handorf, Andrew M. ;
Ionescu, Lara C. ;
Li, Wan-Ju ;
Mauck, Robert L. .
EXPERT REVIEW OF MEDICAL DEVICES, 2009, 6 (05) :515-532
[4]   Self-assembling peptide amphiphile nanofiber matrices for cell entrapment [J].
Beniash, E ;
Hartgerink, JD ;
Storrie, H ;
Stendahl, JC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (04) :387-397
[5]   Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds [J].
Bhumiratana, Sarindr ;
Grayson, Warren L. ;
Castaneda, Andrea ;
Rockwood, Danielle N. ;
Gil, Eun S. ;
Kaplan, David L. ;
Vunjak-Novakovic, Gordana .
BIOMATERIALS, 2011, 32 (11) :2812-2820
[6]  
Bian L, 2011, TISSUE ENG PT A, V17, P1137, DOI [10.1089/ten.tea.2010.0531, 10.1089/ten.TEA.2010.0531]
[7]   RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study [J].
Cakmak, Soner ;
Cakmak, Anil Sera ;
Gumusderelioglu, Menemse .
BIOMEDICAL MATERIALS, 2013, 8 (04)
[8]   Mesenchymal stem cells as trophic mediators [J].
Caplan, Arnold I. ;
Dennis, James E. .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 98 (05) :1076-1084
[9]   Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds [J].
Chen, Jiangning ;
Chen, Huan ;
Li, Pei ;
Diao, Huajia ;
Zhu, Shiyu ;
Dong, Lei ;
Wang, Rui ;
Guo, Ting ;
Zhao, Jianning ;
Zhang, Junfeng .
BIOMATERIALS, 2011, 32 (21) :4793-4805
[10]   In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold [J].
Chen, Kelei ;
Shi, Pujiang ;
Teh, Thomas Kok Hiong ;
Toh, Siew Lok ;
Goh, James C. H. .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 10 (04) :284-293