A new electrode design method in piezoelectric vibration energy harvesters to maximize output power

被引:36
作者
Du, Sijun [1 ]
Jia, Yu [1 ,2 ]
Chen, Shao-Tuan [1 ]
Zhao, Chun [1 ]
Sun, Boqian [3 ]
Arroyo, Emmanuelle [1 ]
Seshia, Ashwin A. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Nanosci Ctr, Cambridge CB2 1PZ, England
[2] Univ Chester, Dept Mech Engn, Chester CH2 4NU, Cheshire, England
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Energy harvesting; Piezoelectric transducers; Microelectromechanical Systems (MEMS);
D O I
10.1016/j.sna.2017.06.026
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 21 条
[1]   Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading [J].
Andosca, Robert ;
McDonald, T. Gus ;
Genova, Vincent ;
Rosenberg, Steven ;
Keating, Joseph ;
Benedixen, Cole ;
Wu, Junru .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 178 :76-87
[2]  
[Anonymous], 2003, ENERGY SCAVENGING WI
[3]  
Apo DJ, 2013, 2013 8TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE NEMS 2013), P615
[4]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[5]   Energy autonomous sensor systems: Towards a ubiquitous sensor technology [J].
Belleville, M. ;
Fanet, H. ;
Fiorini, P. ;
Nicole, P. ;
Pelgrom, M. J. M. ;
Piguet, C. ;
Hahn, R. ;
Van Hoof, C. ;
Vullers, R. ;
Tartagni, M. ;
Cantatore, E. .
MICROELECTRONICS JOURNAL, 2010, 41 (11) :740-745
[6]   An Efficient SSHI Interface With Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions [J].
Du, Sijun ;
Jia, Yu ;
Do, Cuong D. ;
Seshia, Ashwin A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (11) :2729-2742
[7]   Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design [J].
Du, Sijun ;
Jia, Yu ;
Seshia, Ashwin .
15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015), 2015, 660
[8]  
Elvin N., 2013, ADV ENERGY HARVESTIN
[9]  
Hajati A, 2011, PROC IEEE MICR ELECT, P1301, DOI 10.1109/MEMSYS.2011.5734672
[10]   Design and Fabrication of Integrated Magnetic MEMS Energy Harvester for Low Frequency Applications [J].
Han, Mengdi ;
Yuan, Quan ;
Sun, Xuming ;
Zhang, Haixia .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2014, 23 (01) :204-212