Flexural phonons and thermal transport in graphene

被引:705
作者
Lindsay, L. [1 ,2 ]
Broido, D. A. [1 ]
Mingo, Natalio [3 ,4 ]
机构
[1] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[2] Christopher Newport Univ, Dept Phys Comp Sci & Engn, Newport News, VA 23606 USA
[3] CEA Grenoble, F-38000 Grenoble, France
[4] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 11期
基金
美国国家科学基金会;
关键词
CARBON NANOTUBE; CONDUCTIVITY; DIAMOND; CRYSTALS; FILMS;
D O I
10.1103/PhysRevB.82.115427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show through an exact numerical solution of the phonon Boltzmann equation that the lattice thermal conductivity of graphene is dominated by contributions from the out-of-plane or flexural phonon modes, previously thought to be negligible. We connect this unexpected result to the anomalously large density of states of flexural phonons compared to their in-plane counterparts and to a symmetry-based selection rule that significantly restricts anharmonic phonon-phonon scattering of the flexural modes. The result is found to hold in the presence of the ripples known to occur in graphene, phonon-isotopic impurity scattering, and rigidity of the flexural phonon branch arising from the long-wavelength coupling between flexural and in-plane modes. Finally, accurate inclusion of the momentum conserving Normal phonon-phonon scattering processes within the context of a full solution of the phonon Boltzmann equation are shown to be essential in accurately describing the graphene thermal conductivity, in contrast to the more commonly used relaxation time and long wavelength approximations.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[3]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[4]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[7]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[8]   Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations [J].
Gu, Yunfeng ;
Chen, Yunfei .
PHYSICAL REVIEW B, 2007, 76 (13)
[9]   Modification of the three-phonon Umklapp process in a quantum wire [J].
Khitun, A ;
Wang, KL .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :851-853
[10]   Theory of the a-plane thermal conductivity of graphite [J].
Department of Physics, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3046 .
Journal of Wide Bandgap Materials, 2000, 7 (04) :332-339