GROUPS WITH LARGE NOETHER BOUND

被引:16
作者
Cziszter, Kalman [1 ]
Domokos, Matyas [2 ]
机构
[1] Cent European Univ, Dept Math & Its Applicat, H-1051 Budapest, Hungary
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
关键词
Noether bound; polynomial invariant; zero-sum sequence; FINITE-GROUPS; POLYNOMIAL INVARIANTS; DAVENPORT CONSTANT; NUMBER;
D O I
10.5802/aif.2868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that apart from four sporadic exceptions these are exactly the groups with a cyclic subgroup of index at most two.
引用
收藏
页码:909 / 944
页数:36
相关论文
共 43 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]  
[Anonymous], 1994, ALGEBRAIC GEOM
[3]  
Benson D.J., 1993, London Mathematical Society Lecture Note Series
[4]  
Berkovich Y., 2008, DE GRUYTER EXPOSITIO, VI
[5]  
BROWN K, 1982, GTM, V87
[6]   Global degree bounds and the transfer principle for invariants [J].
Bryant, RM ;
Kemper, G .
JOURNAL OF ALGEBRA, 2005, 284 (01) :80-90
[7]  
Burnside W., 1955, Theory of Groups of Finite Order, Vsecond
[8]   CHARACTERISATION OF SUZUKI GROUPS BY THEIR SYLOW 2-SUBGROUPS [J].
COLLINS, MJ .
MATHEMATISCHE ZEITSCHRIFT, 1971, 123 (01) :32-&
[9]  
Cziszter K, 2014, PERIOD MATH HUNG, V68, P150, DOI 10.1007/s10998-014-0025-4
[10]   The Noether number for the groups with a cyclic subgroup of index two [J].
Cziszter, Kalman ;
Domokos, Matyas .
JOURNAL OF ALGEBRA, 2014, 399 :546-560