Split Bregman Method for Minimization of Modified Vese-Chan Model for Fast Image Segmentation

被引:0
作者
Yang, Yunyun [1 ]
Zhao, Yi [1 ]
Wu, Boying [2 ]
Wang, Hongpeng [3 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
来源
2013 8TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA) | 2013年
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present an modified active contour model for fast multiphase image segmentation based on the piecewise constant Vese-Chan model and the split Bregman method. By applying the globally convex image segmentation technique to the piecewise constant Vese-Chan energy functional, we first define a new biconvex energy functional to guarantee fast convergence. Then we incorporate the edge information into the new energy functional with a non-negative edge detector function. Finally, we apply the split Bregman method to fast minimize the new energy functional. Our modified model has been tested with synthetic and real images. Experimental results show that the modified model can obtain similar results to the Vese-Chan model but is much more efficient. Besides, the modified model is robust in the presence of noise.
引用
收藏
页码:66 / +
页数:3
相关论文
共 14 条
  • [1] Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
  • [2] Fast global minimization of the active Contour/Snake model
    Bresson, Xavier
    Esedoglu, Selim
    Vandergheynst, Pierre
    Thiran, Jean-Philippe
    Osher, Stanley
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) : 151 - 167
  • [3] Active contours without edges
    Chan, TF
    Vese, LA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) : 266 - 277
  • [4] Algorithms for finding global minimizers of image segmentation and denoising models
    Chan, Tony F.
    Esedoglu, Selim
    Nikolova, Mila
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (05) : 1632 - 1648
  • [5] Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction
    Goldstein, Tom
    Bresson, Xavier
    Osher, Stanley
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 272 - 293
  • [6] The Split Bregman Method for L1-Regularized Problems
    Goldstein, Tom
    Osher, Stanley
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02): : 323 - 343
  • [7] An iterative regularization method for total variation-based image restoration
    Osher, S
    Burger, M
    Goldfarb, D
    Xu, JJ
    Yin, WT
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 4 (02) : 460 - 489
  • [8] Geodesic active regions and level set methods for supervised texture segmentation
    Paragios, N
    Deriche, R
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 46 (03) : 223 - 247
  • [9] A variational model for image classification and restoration
    Samson, C
    Blanc-Féraud, L
    Aubert, G
    Zerubia, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (05) : 460 - 472
  • [10] A multiphase level set framework for image segmentation using the Mumford and Shah model
    Vese, LA
    Chan, TF
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 50 (03) : 271 - 293