On the Rosenau equation: Lie symmetries, periodic solutions and solitary wave dynamics

被引:5
作者
Demirci, Ali [1 ]
Hasanoglu, Yasin [2 ]
Muslu, Gulcin M. [1 ]
Ozemir, Cihangir [1 ]
机构
[1] Istanbul Tech Univ, Dept Math, Istanbul, Turkey
[2] Gebze Tech Univ, Dept Math, Kocaeli, Turkey
关键词
Rosenau equation; Solitary waves; Lie symmetries; Periodic solutions; Petviashvili method; Fourier pseudo-spectral method;
D O I
10.1016/j.wavemoti.2021.102848
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we first consider the Rosenau equation with the quadratic nonlinearity and identify its Lie symmetry algebra. We obtain reductions of the equation to ODEs, and find periodic analytical solutions in terms of elliptic functions. Then, considering a general power-type nonlinearity, we prove the non-existence of solitary waves for some parameters using Pohozaev type identities. The Fourier pseudo-spectral method is proposed for the Rosenau equation with this single power type nonlinearity. In order to investigate the solitary wave dynamics, we generate the initial solitary wave profile by using the Petviashvili's method. Then the evolution of the single solitary wave and overtaking collision of solitary waves are investigated by various numerical experiments. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 23 条
[1]  
Byrd Paul F., 2013, Handbook of Elliptic Integrals for Engineers and Physicists, V67
[2]   A discontinuous Galerkin method for the Rosenau equation [J].
Choo, S. M. ;
Chung, S. K. ;
Kim, K. I. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :783-799
[3]  
Chung SK., 1994, APPL ANAL, V54, P39, DOI [10.1080/00036819408840267, DOI 10.1080/00036819408840267]
[4]  
Chung SK., 2001, APPL ANAL, V77, P351, DOI [10.1080/00036810108840914, DOI 10.1080/00036810108840914]
[5]  
Danumjaya P., 2019, ARXIV PREPRINT ARXIV
[6]   A semi-discrete numerical method for convolution-type unidirectional wave equations [J].
Erbay, H. A. ;
Erbay, S. ;
Erkip, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387 (387)
[7]   Numerical computation of solitary wave solutions of the Rosenau equation [J].
Erbay, H. A. ;
Erbay, S. ;
Erkip, A. .
WAVE MOTION, 2020, 98
[8]  
Gong XA, 2010, IEEE IND APPLIC SOC
[9]  
Kalisch H, 2000, DISCRET CONTIN DYN S, V6, P1
[10]   OSCILLATORY SOLITARY WAVES IN DISPERSIVE MEDIA [J].
KAWAHARA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (01) :260-&