Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices

被引:17
作者
Agostini, Marco [1 ]
Lim, Du Hyun [1 ]
Brutti, Sergio [2 ]
Lindahl, Nildas [1 ]
Ahn, Jou Hyeon [3 ,4 ]
Scrosati, Bruno [5 ]
Matic, Aleksandar [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[2] CNR, ISC, UOS Sapienza, Piazzale A Moro 5, I-00185 Rome, Italy
[3] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, 501 Jinju Daero, Jinju 52828, South Korea
[4] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, 501 Jinju Daero, Jinju 52828, South Korea
[5] HIU, D-89081 Ulm, Germany
基金
新加坡国家研究基金会;
关键词
fast-charging Li-batteries anode; 3D-sponged nanofibers electrode; Li-ion batteries; free-standing electrode materials; high gravimetric energy density; RECHARGEABLE LITHIUM BATTERIES; CARBONACEOUS MATERIALS; ANODE MATERIALS; ION BATTERIES; INSERTION; COMPOSITE; NANOMATERIALS; SPECTROSCOPY; PHOSPHORUS; CHALLENGES;
D O I
10.1021/acsami.8b09746
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have designed a self-standing anode built-up from highly conductive 3D-sponged nanofibers, that is, with no current collectors, binders, or additional conductive agents. The small diameter of the fibers combined with an internal spongelike porosity results in short distances for lithium-ion diffusion and 3D pathways that facilitate the electronic conduction. Moreover, functional groups at the fiber surfaces lead to the formation of a stable solid-electrolyte interphase. We demonstrate that this anode enables the operation of Li-cells at specific currents as high as 20 A g(-1) (approx. 50C) with excellent cycling stability and an energy density which is >50% higher than what is obtained with a commercial graphite anode.
引用
收藏
页码:34140 / 34146
页数:7
相关论文
共 37 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [4] Nanomaterials for renewable energy production and storage
    Chen, Xiaobo
    Li, Can
    Graetzel, Michael
    Kostecki, Robert
    Mao, Samuel S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (23) : 7909 - 7937
  • [5] Characterization of amorphous and nanocrystalline carbon films
    Chu, PK
    Li, LH
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2006, 96 (2-3) : 253 - 277
  • [6] The path towards sustainable energy
    Chu, Steven
    Cui, Yi
    Liu, Nian
    [J]. NATURE MATERIALS, 2017, 16 (01) : 16 - 22
  • [7] Opportunities and challenges for a sustainable energy future
    Chu, Steven
    Majumdar, Arun
    [J]. NATURE, 2012, 488 (7411) : 294 - 303
  • [8] MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS
    DAHN, JR
    ZHENG, T
    LIU, YH
    XUE, JS
    [J]. SCIENCE, 1995, 270 (5236) : 590 - 593
  • [9] Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries
    Derrien, Gaelle
    Hassoun, Jusef
    Panero, Stefania
    Scrosati, Bruno
    [J]. ADVANCED MATERIALS, 2007, 19 (17) : 2336 - +
  • [10] Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond
    Ferrari, AC
    Robertson, J
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824): : 2477 - 2512