Piezo-potential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark

被引:51
|
作者
Yein, Win Thi [1 ]
Wang, Qun [1 ]
Liu, Yang [1 ]
Li, Yang [1 ]
Jian, Jiahuang [1 ]
Wu, Xiaohong [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Defect-rich MoS2; Piezopolarization; Molecular oxygen activation; Redox couple; Dye degradation; ERIOCHROME BLACK-T; EFFICIENT DEGRADATION; MOLYBDENUM-DISULFIDE; MECHANICAL ENERGY; HYDROGEN-PEROXIDE; 2D MATERIALS; NANOSTRUCTURES; POLLUTANTS; NANOWIRES; BIOCL;
D O I
10.1016/j.jece.2019.103626
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a new concept, single-and odd-numbered layer of molybdenum disulfide (MoS2) is a piezocatalyst semiconductor. Herein, we report the created odd numbered layer of defect-rich MoS2 (DR-MoS2) with high sulfur (S) vacancy concentration (S/Mo ratio-0.83) which can strongly interact with adsorbed oxygen molecules for highly efficient generation of reactive oxygen species (ROS) in the piezocatalytic degradation process. DR-MoS2 presents far superior piezocatalytic activity for Eriochrome Black T dye degradation which is 2.14 and 18.12 times higher than that of defect-free MoS2 (DF-MoS2) and bulk MoS2. The abundant native S vacancies induced the enhanced carrier density (electron density) of DR-MoS2 is to be 4.6 x 10(17) cm(-3) and is roughly 15 times higher than that the 2.9 x 10(16) cm(-3) of DF-MoS2. The S vacancies induced the increased flat-band potential and the vast majority of charge density strengthens the electron transfer dynamics and increases the surface band bending, which drive the charge carrier separation efficiently along with piezopolarization. More importantly, Mo active sites created by S vacancy defects can facilitate the two-electron reduction of molecular oxygen activation by introducing Mo4+/Mo6+ redox couple. In addition, based on the experimental results, a tentative mechanism was proposed to explain the origin of the piezocatalytic enhancement in DR- MoS2.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Water-Soluble Defect-Rich MoS2 Ultrathin Nanosheets for Enhanced Hydrogen Evolution
    Zhang, Jianfang
    Wang, Yan
    Cui, Jiewu
    Wu, Jingjie
    Li, Yang
    Zhu, Tianyu
    Kang, Huirui
    Yang, Jingping
    Sun, Jian
    Qin, Yongqiang
    Zhang, Yong
    Ajayan, Pulickel M.
    Wu, Yucheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (12): : 3282 - 3289
  • [2] A defect-rich ultrathin MoS2/rGO nanosheet electrocatalyst for the oxygen reduction reaction
    Zhang, Songlin
    Xie, Yujiao
    Yang, Mengna
    Li, Zhongying
    Zhang, Lulu
    Guo, Jiahao
    Tang, Jing
    Chen, Junming
    Wang, Xuchun
    RSC ADVANCES, 2021, 11 (40) : 24508 - 24514
  • [3] Piezoelectric potential induced the improved micro-pollutant dye degradation of Co doped MoS2 ultrathin nanosheets in dark
    Yein, Win Thi
    Wang, Qun
    Li, Yang
    Wu, Xiaohong
    CATALYSIS COMMUNICATIONS, 2019, 125 : 61 - 65
  • [4] Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors
    Wu, Zhengcui
    Li, Baoer
    Xue, Yejing
    Li, Jingjing
    Zhang, Yali
    Gao, Feng
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19445 - 19454
  • [5] Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
    Xie, Junfeng
    Zhang, Hao
    Li, Shuang
    Wang, Ruoxing
    Sun, Xu
    Zhou, Min
    Zhou, Jingfang
    Lou, Xiong Wen
    Xie, Yi
    ADVANCED MATERIALS, 2013, 25 (40) : 5807 - +
  • [6] Defect-rich MoS2 piezocatalyst: Efficient boosting piezocatalytic activation of PMS activity towards degradation organic pollutant
    Li, Shanhao
    Ning, Xueer
    Hao, Pingyu
    Cao, Yali
    Xie, Jing
    Hu, Jindou
    Lu, Zhenjiang
    Hao, Aize
    DYES AND PIGMENTS, 2022, 206
  • [7] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Qiangbin Yang
    Yi He
    Yi Fan
    Fei Li
    Xi Chen
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 7413 - 7418
  • [8] Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution
    Yang, Qiangbin
    He, Yi
    Fan, Yi
    Li, Fei
    Chen, Xi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (10) : 7413 - 7418
  • [9] Defect-rich Fe-doped NiS/MoS2 heterostructured ultrathin nanosheets for efficient overall water splitting
    Liu, Peng
    Li, Jiawen
    Yan, Jianyue
    Song, Wenbo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (14) : 8344 - 8350
  • [10] Vertically grown MoS2 nanosheets on graphene with defect-rich structure for efficient sodium storage
    Ying Wang
    Jia-Peng He
    Han-Qing Pan
    Qing-Peng Wang
    Lei Zhang
    Yong-Chang Liu
    Qing-Hong Wang
    Rare Metals, 2024, 43 : 1062 - 1071