Borel circle squaring

被引:15
作者
Marks, Andrew S. [1 ]
Unger, Spencer T. [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
descriptive set theory; descriptive graph combinatorics; flows; circle squaring; hyperfiniteness; amenability; SETS; DISCREPANCY; BOUNDARY; CONVEX;
D O I
10.4007/annals.2017.186.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a completely constructive solution to Tarski's circle squaring problem. More generally, we prove a Borel version of an equidecomposition theorem due to Laczkovich. If k >= 1 and A, B subset of R-k are bounded Borel sets with the same positive Lebesgue measure whose boundaries have upper Minkowski dimension less than k, then A and B are equidecomposable by translations using Borel pieces. This answers a question of Wagon. Our proof uses ideas from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types of witnesses to the hyperfiniteness of free Borel actions of Z(d).
引用
收藏
页码:581 / 605
页数:25
相关论文
共 21 条
[1]   The Max-Flow Min-Cut theorem for countable networks [J].
Aharoni, Ron ;
Berger, Eli ;
Georgakopoulos, Agelos ;
Perlstein, Amitai ;
Spruessel, Philipp .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (01) :1-17
[2]  
[Anonymous], PREPRINT
[3]  
Boykin CM, 2007, CONTEMP MATH, V425, P113
[4]  
Diestel Reinhard, 2017, Graduate Texts in Mathematics, V173
[5]   SCISSOR CONGRUENCE [J].
DUBINS, L ;
KARUSH, J ;
HIRSCH, MW .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (04) :239-&
[6]  
Gao S., 2015, ARXIV150307822
[7]   Countable abelian group actions and hyperfinite equivalence relations [J].
Gao, Su ;
Jackson, Steve .
INVENTIONES MATHEMATICAE, 2015, 201 (01) :309-383
[8]   CONVEX-BODIES EQUIDECOMPOSABLE BY LOCALLY DISCRETE-GROUPS OF ISOMETRIES [J].
GARDNER, RJ .
MATHEMATIKA, 1985, 32 (63) :1-9
[9]   Measurable circle squaring [J].
Grabowski, Lukasz ;
Mathe, Andras ;
Pikhurko, Oleg .
ANNALS OF MATHEMATICS, 2017, 185 (02) :671-710
[10]  
Jackson S., 2002, Journal of Mathematical Logic, V2, P1, DOI [10.1142/S0219061302000138, DOI 10.1142/S0219061302000138]