Maximally entangled mixed states and conditional entropies - art. no. 0243201

被引:24
作者
Batle, J [1 ]
Casas, M
Plastino, A
Plastino, AR
机构
[1] Univ Illes Balears, Dept Fis, Palma de Mallorca 07122, Spain
[2] CSIC, IMEDEA, Palma de Mallorca 07122, Spain
[3] Consejo Nacl Invest Cient & Tecn, RA-1900 La Plata, Argentina
[4] Natl Univ La Plata, Dept Phys, RA-1900 La Plata, Argentina
[5] Natl Univ La Plata, Fac Astron & Geophys, RA-1900 La Plata, Argentina
[6] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 02期
关键词
D O I
10.1103/PhysRevA.71.024301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The maximally entangled mixed states of Munro [Phys. Rev. A 64, 030302 (2001)] are shown to exhibit interesting features vis a vis conditional entropic measures. The same happens with the Ishizaka and Hiroshima states [Phys. Rev. A 62, 022310 (2000)], whose entanglement degree cannot be increased by acting on them with logic gates. Special types of entangled states that do not violate classical entropic inequalities are seen to exist in the space of two qubits. Special meaning can be assigned to the Munro special participation ratio of 1.8.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement [J].
Barbieri, M ;
De Martini, F ;
Di Nepi, G ;
Mataloni, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :177901-1
[2]   Entanglement, mixedness, and q-entropies [J].
Batle, J ;
Casas, M ;
Plastino, AR ;
Plastino, A .
PHYSICS LETTERS A, 2002, 296 (06) :251-258
[3]  
Batle J, 2003, EUR PHYS J B, V35, P391, DOI 10.1140/epjb/e2003-00291-3
[4]   On the entanglement properties of two-rebits systems [J].
Batle, J ;
Plastino, AR ;
Casas, M ;
Plastino, A .
PHYSICS LETTERS A, 2002, 298 (5-6) :301-307
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]  
Berman G.P., 1998, INTRO QUANTUM COMPUT
[9]  
BOUWMEESTER D, 1998, PHYS QUANTUM INFORMA
[10]   Thermodynamics and the Tsallis variational problem [J].
Casas, M ;
Martínez, S ;
Pennini, F ;
Plastino, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :41-47