Error bounds for the asymptotic expansion of the Hurwitz zeta function

被引:13
|
作者
Nemes, G. [1 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
asymptotic expansions; error bounds; Hurwitz zeta function; polygamma functions; gamma function; Barnes G-function;
D O I
10.1098/rspa.2017.0363
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we reconsider the large-a asymptotic expansion of the Hurwitz zeta function zeta(s, a). New representations for the remainder term of the asymptotic expansion are found and used to obtain sharp and realistic error bounds. Applications to the asymptotic expansions of the polygamma functions, the gamma function, the Barnes G-function and the s-derivative of the Hurwitz zeta function zeta(s, a) are provided. A detailed discussion on the sharpness of our error bounds is also given.
引用
收藏
页数:16
相关论文
共 50 条